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ABSTRACT. We develop a symplectic theory approach to partial solving the problem

of algebraic-analytical construction of integral submanifold imbeddings for integrable via the

abelian and nonabelian Liouville-Arnold theorems Hamiltonian systems on canonically sym-

plectic phase spaces. The fundamental role of so called Picard-Fuchs type equations is revealed

and their differential-geometric and algebraic properties are studied in detail. Some interest-

ing examples of integrable Hamiltonian systems demonstrating the algorithm of investigating

the integral submanifolds imbedding mapping are studied in deatil.

0. Introduction.

0.1. As is well known [1,4], the integrability by quadratures of a differ-

ential equation in space Rn is a method of seeking its solutions by means of

finite number of algebraic operations (together with inversion of functions) and

”quadratures”- calculations of integrals of known functions.

Assume that our differential equation is given as a Hamiltonian dynamical

system on some appropriate symplectic manifold (M2n, ω(2)), n ∈ Z+, in the

form

du/dt = {H, u}, (0.1)

where u ∈ M2n, H : M2n →R is a sufficiently smooth Hamiltonian function

[1,4] with respect to the Poisson bracket {·, ·} onD(M2n), dual to the symplectic

structure ω(2) ∈ Λ2(M2n), and t ∈R is the evolution parameter.

More than one hundred and fifty years ago French mathematicians and

physicists, first E. Bour and next J. Liouville, proved the first ”integrability

by quadratures” theorem which in modern terms [33] can be formulated as fol-

lows.

Theorem 0.1. Let M2n ' T ∗(Rn) be a canonically symplectic phase space

and there be given a dynamical system(0.1) with a Hamiltonian function H:

M2n×Rt →R , possessing a Poissonian Lie algebra G of n∈ Z+ invariants

Hj : M2n×Rt →R, j=1, n, such that

{Hi, Hj} =

n∑

s=1

cs
ijHs, (0.2)

1



and for all i,j,k =1, n the cs
ij ∈R are constants on M2n×Rt. Suppose further

that

Mn+1
h =:= {(u, t) ∈M × Rt : h(Hj) = hj , j = 1, n, h ∈ G∗},

(0.3)

the integral submanifold of the set G of invariants at a regular element h∈ G∗,
is a well defined connected submanifold of M×Rt. Then, if :

i) all functions of G are functionally independent on Mn+1
h ;

ii)
∑n

s=1 cs
ijhs = 0 for all i, j =1, n;

iii) the Lie algebra G = spanR {Hj : M2n×Rt →R: j= 1, n} is solvable,

the Hamiltonian system (0.1) on M2n is integrable by quadratures.

As a simple corollary of the Bour-Liouville theorem one gets the following:

Corollary 0.2. If a Hamiltonian system on M2n =T∗(Rn) possesses just

n∈ Z+ functionally independent invariants in involution, that is a Lie algebra

G is abelian, then it is integrable by quadratures.

In the autonomous case when a Hamiltonian H = H1, and invariants Hj

:M2n → R, j = 1, n, are independent of the evolution parameter t ∈R, the

involutivity condition {Hi, Hj} =0 , i, j = 1, n, can be replaced by the weaker

one {H, Hj} = cjH for some constants cj ∈ R, j = 1, n.

The first proof of Theorem 0.1. was based on a result of S. Lie, which can

be formulated as follows.

Theorem 0.3 (S. Lie) Let vector fields Kj ∈ Γ(M2n), j = 1, n, be inde-

pendent in some open neighborhood Uh ∈M2n, generate a solvable Lie algebra

G with respect to the usual commutator [·, ·] on Γ(M2n) and [Kj, K] =cjK

for all j = 1, n, where cj ∈R, j = 1, n, are constants. Then the dynamical

system

du/dt = K(u), (0.1’)

where u ∈Uh ⊂ M2n, is integrable by quadratures.

Example 0.4 Motion of three particles on line R under uniform potential

field.
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The motion of three particles on the axis R pairwise interacting via a uni-

form potential field Q(‖·‖) is described as a Hamiltonian system on the canon-

ically symplectic phase space M = T ∗(R3) with the following Lie algebra G of

invariants on M2n:

H = H1 =

3∑

j=1

p2
j/2mj +

3∑

i<j=1

Q(‖qi − qj‖), (0.4)

H2 =
3∑

j=1

qjpj, H3 =
3∑

j=1

pj,

where (qj , pj) ∈ T ∗(R), j = 1, 3, are coordinates and momenta of particles on

the axis R. The commutation relations for the Lie algebra G are

{H1, H3} = 0, {H2, H3} = H3, {H1, H2} = 2H1, (0.5)

hence it clearly solvable. Taking a regular element h ∈ G∗, such that h(Hj) =

hj = 0, for j = 1 and 3, and h(H2) = h2 ∈ R being arbitrary, one obtains the

integrability of the problem above in quadratures.

0.2. In 1974 V. Arnold proved [4] the following important result known as

the commutative (abelian) Liouville-Arnold theorem.

Theorem 0.5 (J.Liouville-V. Arnold). Suppose a set G of functions Hj :

M2n → R, j = 1, n, on a symplectic manifold M2n is abelian, that is

{Hi, Hj} = 0 (0.6)

for all i, j = 1, n. If on the compact and connected integral submanifold Mn
h={u∈M2n:

h(Hj)=hj ∈ R, j=1, n, h∈ G∗} with h∈ G being regular, all functions H :

M2n ∈R, j = 1, n, are functionally independent, then Mn
h is diffeomorphic

to the n-dimensional torus Tn ' M2n, and the motion on it with respect to the

Hamiltonian H=H1 ∈ G is a quasi-periodic function of the evolution parameter

t∈ R.

A dynamical system satisfying the hypotheses of Theorem 0.5 is called com-

pletely integrable.

3



In 1978 Mishchenko and Fomenko [2] proved the following generalization of

the Liouville-Arnold theorem 0.5:

Theorem 0.6. (A. Mishchenko-A. Fomenko) Assume that on a symplec-

tic manifold (M2n,ω(2)) there is a nonabelian Lie algebra G of invariants Hj :

M ∈R, j=1, k, with respect to the dual Poisson bracket on M2n, that is

{Hi, Hj} =

k∑

s=1

cs
ijHs, (0.7)

where all values cs
ij ∈ R, i,j,s =1, k, are constants, and the following conditions

are satisfied:

i) the integral submanifold Mr
h:={u∈M2n:h(Hj)=h ∈ G∗} is compact and

connected at a regular element h ∈ G∗;
ii) all functions Hj:M

2n → R, j=1, k, are functionally independent on M2n;

iii)the Lie algebra G of invariants satisfies the following relationship:

dimG + rankG = dimM2n, (0.8)

where rankG = dim Gh is the dimension of a Cartan subalgebra Gh ⊂ G.
Then the submanifold M r

h ⊂ M2n is r = rankG -dimensional, invariant with

respect each vector field K∈ Γ(M2n) , generated by an element H ∈ Gh, and

diffeomorphic to the r-dimensional torus Tr ' M r
h, on which the motion is a

quasiperiodic function of the evolution parameter t ∈ R.

0.3. The simplest proof of the Mishchenko -Fomenko Theorem 0.6 can be

obtained from the well known [3,16] classical Lie-Cartan theorem.

Theorem 0.7 (S. Lie-E. Cartan) Spose that a point h∈ G∗ for a given Lie

algebra G of invariants Hj :M2n →R, j=1, k, is not critical, and the rank

||{Hi, Hj} : i, j = 1, k|| = 2(n − r) is constant in an open neighborhood Uh

∈Rn of the point {h(Hj) = hj ∈R: j = 1, k}⊂ Rk. Then in the neighborhood

(h ◦ H)−1 :Uh ⊂ M2n there exist k∈ Z+ independent functions fs : G →R,

s = 1, k, such that the functions Fs := (fs ◦H) : M2n ∈ R, s = 1, k, satisfy

the following relationships:

{F1, F2} = {F3, F4} = ... = {F2(n−r)−1, F2(n−r)} = 1, (0.9)
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with all other brackets {Fi, Fj} = 0, where (i, j) 6= (2s− 1, 2s), s = 1, n− r.

In particular, (k + r − n) ∈ Z+ functions Fj : M2n →R, j = 1, n− r, and

Fs : M2n →R, s = 1, k − 2(n− r), compose an abelian algebra Gτ of new

invariants on M2n, independent on (h ◦H)−1(Uh) ⊂M2n.

As a simple corollary of the Lie-Cartan Theorem 0.7 one obtains the follow-

ing : in the case of the Mishchenko-Fomenko theorem when rankG + dimG =

dimM2n, that is r + k = 2n, the abelian algebra Gτ (it is not a subalgebra of

G !) of invariants on M2n is just n = 1/2dimM2n-dimensional, giving rise to its

local complete integrability in (h ◦H)−1(Uh) ⊂ M2n via the abelian Liouville-

Arnold theorem 0.5. It is also evident that the Mishchenko-Fomenko non-

abelian integrability theorem 0.6 reduces to the commutative (abelian) Liouville-

Arnold case when a Lie algebra G of invariants is just abelian, since then

rankG = dimG = 1/2 dimM2n = n ∈ Z+ - the standard complete integra-

bility condition.

All the cases of integrability by quadratures described above pose the fol-

lowing fundamental question: How can one effectively construct by means of

algebraic-analytical methods the corresponding integral submanifold imbedding

πh : M r
h →M2n, (0.10)

where r = dim rankG, thereby making it possible to express the solutions of

an integrable flow on M r
h as some exact quasi-periodic functions on the torus

Tr 'M r
h.

Below we shall describe an algebraic-analytical algorithm for resolving this

question for the case when a symplectic manifold M 2n is diffeomorphic to the

canonically symplectic cotangent phase space T ∗(R) 'M2n..

1 General setting.

1.1. Our main object of study will be differential systems of vector fields on

the cotangent phase space M2n = T ∗(Rn), n ∈ Z+, endowed with the canonical

symplectic structure ω(2) ∈ Λ2(M2n), where by ω(2) = d(pr∗α(1)), and
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α(1) :=< p, dq >=

n∑

j=1

pjdqj , (1.1)

is the canonical 1-form on the base space Rn, lifted naturally to the space

Λ1(M2n), (q, p) ∈M2n are canonical coordinates on T ∗(Rn), pr : T ∗(Rn)→ R

is the canonical projection , and < ·, · > is the usual scalar product in Rn.

Assume further that there is also given a Lie subgroup G (not necessarily

compact), acting symplectically via the mapping ϕ : G×M2n →M2n on M2n,

generating a Lie algebra homomorphism ϕ∗ : T (G)→Γ(M2n) via the diagram

G × G ' T (G) ϕ∗(u)→ T (M2n)

↓ ↓
G ϕ(u)→ M2n

(1.2)

where u ∈M2n. Thus, for any a ∈G one can define a vector field Ka ∈ Γ(M2n)

as follows:

Ka = ϕ∗ · a. (1.3)

Since the manifold M2n is symplectic, one can naturally define for any a ∈ G
a function Ha ∈ D(M2n) as follows:

−iKa
ω(2) = dHa, (1.4)

whose existence follows from the invariance property

LKa
ω(2) = 0 (1.5)

for all a ∈ G. The following lemma [1] is useful in applications.

Lemma 1.1. If the first homology group H1(G; R) of the Lie algebra G
vanishes, then the mapping Φ : G → D(M2n) defined as

Φ(a) := Ha (1.6)
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for any a ∈ G, is a Lie algebra homomorphism of G and D(M2n) (endowed

with the Lie structure induced by the symplectic structure ω(2) ∈ Λ2(M2n)). In

this case G is said to be Poissonian.

As the mapping Φ : G → D(M2n) is evidently linear in G, the expression

(1.6) naturally defines a momentum mapping l : M2n → G∗ as follows: for any

u ∈M2n and all a ∈ G

(l(u), a)G := Ha(u), (1.7)

where (·, ·)G is the standard scalar product on the dual pair G∗×G. The following

characteristic equivariance [1] lemma holds.

Lemma 1.2. The diagram

M2n l→ G∗

ϕg

y
yAd∗

g−1

M2n l→ G∗
(1.8)

commutes for all g ∈ G, where Ad∗
g−1 : G∗ → G∗ is the corresponding

co-adjoint action of the Lie group G on the dual space G∗.
Take now any vector h ∈ G∗ and consider a subspace Gh ⊂ G , consisting of

elements a ∈ G, such that ad∗ah = 0, where ad∗a : G∗ → G∗is the corresponding

Lie algebra G representation in the dual space G∗.
The following lemmas hold.

Lemma 1.3.The subspace Gh ⊂ G is a Lie subalgebra of G, called here a

Cartan subalgebra.

Lemma 1.4. Assume a vector h ∈ G∗ is chosen in such a way that r =

dimGh is minimal. Then the Cartan Lie subalgebra Gh ⊂ G is abelian.

In Lemma1.4 the corresponding element h ∈ G∗ is called regular and the

number r = dim Gh is called the rankG of the Lie algebra G.
1.2. Some twenty years ago Mishchenko and Fomenko [2] proved the fol-

lowing important noncommutative (nonabelian) Liouville-Arnold theorem.

Theorem 1.5. On a symplectic space (M2n, ω(2)) let there be given a

set of smooth functions Hj ∈ D(M2n), j = 1, k, whose linear span over R

comprises a Lie algebra G with respect to the corresponding Poisson bracket on
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M2n. Suppose also that the set

M2n−k
h := {u ∈M2n : h(Hj) = hj ∈ R, j = 1, k, h ∈ G∗}

with h ∈ G∗ regular, is a submanifold of M2n, and on M2n−k
h all the functions

Hj ∈ D(M2n), j = 1, k, are functionally independent. Assume also that the

Lie algebra G satisfies the following condition:

dimG+rankG = dimM2n. (1.9)

Then the submanifold M r
h := M2n−k

h is rankG = r−dimensional and invariant

with respect to each vector field Ka ∈ Γ(M2n) with a ∈ Gh ⊂ G .Given a

vector field K = Ka ∈ Γ(M2n) with a ∈ Gh or K ∈ Γ(M2n) such that

[K, Ka] = 0 for all a ∈ G, then, if the submanifold M r
h is connected and

compact, it is diffeomorphic to the r−dimensional torus Tr ' M r
h and the

motion of the vector field K ∈ Γ(M2n) on it is a quasiperiodic function of the

evolution parameter t ∈ R.

The easiest proof of this result can be obtained from the well known [3]

classical Lie -Cartan theorem, mentioned in the Introduction. Below we shall

only sketch the original Mishchenko-Fomenko proof which is heavily based on

symplectic theory techniques, some of which have been discussed above.

JSketch of the proof. Define a Lie group G naturally as G = expG, where

G is the Lie algebra of functions Hj ∈ D(M2n), j = 1, k, in the theorem , with

respect to the Poisson bracket {·, ·} on M2n. Then for an element h ∈ G∗ and

any a =
∑k

j=1 cjHj ∈ G , where cj ∈ R, j = 1, k, the following equality

(h, a)G :=

k∑

j=1

cjh(Hj) =

k∑

j=1

cjhj (1.10)

holds. Since all functions Hj ∈ D(M2n), j = 1, k, are independent on the

level submanifold M r
h ⊂M2n, this evidently means that the element h ∈ G∗ is

regular for the Lie algebra G. Consequently, the Cartan Lie subalgebra Gh ⊂ G
is abelian. The latter is proved by means of simple straightforward calculations.

Moreover, the corresponding momentum mapping l : M2n → G∗ is constant

on M r
h and satisfies the following relation:

l(M r
h) = h ∈ G∗. (1.11)
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From this it can be shown that all vector fields K a ∈ Γ(M2n), a ∈ Gh,

are tangent to the submanifold M r
h ⊂ M2n. Thus the corresponding Lie

subgroup Gh := expGh acts naturally and invariantly on M r
h. If the sub-

manifold M r
h ⊂ M2n is connected and compact, it follows from (1.10) that

dimM r
h = dim M2n − dimG = rankG =r, and one obtains via the Arnold the-

orem [4] , that M r
h ' Tr and the motion of the vector field K ∈ Γ(M2n) is

a quasiperiodic function of the evolution parameter t ∈ R, thus proving the

theorem. I

As a nontrivial consequence of the Lie-Cartan theorem mentioned before and

of the Theorem 1.5, one can prove the following dual theorem about abelian

Liouville-Arnold integrability.

Theorem 1.6. Let a vector field K ∈ Γ(M2n) be completely integrable

via the nonabelian scheme of Theorem 1.5. Then it is also Liouville-Arnold

integrable on M2n and possesses, under some additional conditions, yet another

abelian Lie algebra Gh of functionally independent invariants on M2n, for

which dimGh = n = 1/2 dimM2n.

The available proof of the theorem above is quite complicated, and we shall

comment on it in detail later on. We mention here only that some analogs of

the reduction Theorem 1.5 for the case where M2n ' G∗, so that an arbitrary

Lie group G acts symplectically on the manifold, were proved also in [6-10,

34]. Notice here, that in case when the equality (1.10) is not satisfied , one can

then construct in the usual way the reduced manifold M
2n−k−r

h := M2n−k
h /Gh

on which there exists a symplectic structure ω
(2)
h ∈ Λ2(M

2n−k−r

h ), defined as

r∗hω
(2)
h = π∗

hω(2) (1.12)

with respect to the following compatible reduction-imbedding diagram:

M
2n−k−r

h

rh←−M2n−k
h

πh→M2n, (1.13)

where rh : M2n−k
h →M

2n−k−r

h and πh : M2n−k
h →M2n are, respectively, the

corresponding reductions and imbedding mappings. The nondegeneracy of the

2-form ω
(2)
h ∈ Λ2(Mh) defined by (1.13), follows simply from the expression

ker(π∗
hω(2)(u)) = Tu(M2n−k

h ) ∩ T⊥
u (M2n−k

h ) = (1.14)
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spanR{Ka(u) ∈ Tu(M
2n−k−r

h := M2n−k
h /Gh) : a ∈ Gh}

for any u ∈ M2n−k
h , since all vector fields Ka ∈ Γ(M2n), a ∈ Gh, are tangent

to M
2n−k−r

h := M2n−k
h /Gh. Thus, the reduced space M

2n−k−r

h := M2n−k
h /Gh

with respect to the orbits of the Lie subgroup Gh action on M2n−k
h will be

a (2n − k − r)-dimensional symplectic manifold. The latter evidently means

that the number 2n − k − r = 2s ∈ Z+ is even as there is no symplectic

structure on odd-dimensional manifolds. This obviously is closely connected

with the problem of existence of a symplectic group action of a Lie group G

on a given symplectic manifold (M2n, ω(2)) with a symplectic structure ω(2) ∈
Λ(2)(M2n) being a′priori fixed. From this point of view one can consider

the inverse problem of constructing symplectic structures on a manifold M2n

, admitting a Lie group G action. Namely, owing to the equivariance property

(1.8) of the momentum mapping l : M2n → G∗, one can obtain the induced

symplectic structure l∗Ω
(2)
h ∈ Λ2(M

2n−k−r

h ) on M
2n−k−r

h from the canonical

symplectic structure Ω
(2)
h ∈ Λ(2)(Or(h; G)) on the orbit Or(h; G) ⊂ G∗ of a

regular element h ∈ G∗. Since the symplectic structure l∗Ω
(2)
h ∈ Λ2(Mh) can

be naturally lifted to the 2-form ω̃(2) = (r∗h ◦ l∗)Ω
(2)
h ∈ Λ2(M2n−k

h ), the latter

being degenerate on M2n−k
h can apparently be nonuniquely extended on the

whole manifold M2n to a symplectic structure ω(2) ∈ Λ2(M2n), for which the

action of the Lie group G is a′priori symplectic. Thus, many properties of a

given dynamical system with a Lie algebra G of invariants on M2n are deeply

connected with the symplectic structure ω(2) ∈ Λ2(M2n) the manifold M2n is

endowed with, and in particular, with the corresponding integral submanifold

imbedding mapping πh : M2n−k
h → M2n at a regular element h ∈ G∗. The

problem of direct algebraic-analytical construction of this mapping was in part

solved in [11] in the case where n = 2 for an abelian algebra G on the manifold

M4 = T ∗(R2). The treatment of this problem in [11] has been extensively

based both on the classical Cartan studies of integral submanifolds of ideals

in Grassmann algebras and on the modern Galisot-Reeb-Francoise results for a

symplectic manifold (M2n, ω(2)) structure, on which there exists an involutive

set G of functionally independent invariants Hj ∈ D(M2n), j = 1, n. In

what follows below we generalize the Galisot-Reeb-Francoise results to the

case of a nonabelian set of functionally independent functions Hj ∈ D(M2n),
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j = 1, k, comprising a Lie algebra G and satisfying the Mishchenko-Fomenko

condition (1.10): dimG+rankG =dimM2n. This makes it possible to devise an

effective algebraic-analytical method of constructing the corresponding integral

submanifold imbedding and reduction mappings, giving rise to a wide class of

exact, integrable by quadratures solutions of a given integrable vector field on

M2n.

2 Integral submanifold imbedding problem for

an abelian Lie algebra of invariants

2.1. We shall consider here only a set G of commuting polynomial functions

Hj ∈ D(M2n), j = 1, n, on the canonically symplectic phase space M2n =

T ∗(Rn). Due to the Liouville -Arnold theorem [4], any dynamical system K ∈

Γ(M2n) commuting with corresponding Hamiltonian vector fields Ka for all a ∈
G , will be integrable by quadratures in case of a regular element h ∈ G∗, which

defines the corresponding integral submanifold Mn
h := {u ∈ M2n : h(Hj) =

hj ∈ R, j = 1, n} which is diffeomorphic (when compact and connected) to the

n−dimensional torus Tn 'Mn
h . This in particular means that there exists some

algebraic-analytical expression for the integral submanifold imbedding mapping

πh : Mn
h → M2n into the ambient phase space M2n, which one should find

in order to properly demonstrate integrability by quadratures.

The problem formulated above was posed and in part solved (as was men-

tioned above) for n = 2 in [11] and in [13] for a Henon-Heiles dynamical

system which had previously been integrated [14,15] using other tools. Here we

generalize the approach of [11] for the general case n ∈ Z+ and proceed further

in Chapter 3 to solve this problem in the case of a nonabelian Lie algebra G
of polynomial invariants on M2n = T ∗(Rn), satisfying all the conditions of

Mishchenko-Fomenko Theorem 1.5.

2.2. Define now the basic vector fields Kj ∈ Γ(M2n), j = 1, n, generated by

basic elements Hj ∈ G of an abelian Lie algebra G of invariants on M2n, as
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follows:

−iKj
ω(2) = dHj (2.1)

for all j = 1, n. It is easy to see that the condition {Hj , Hi} = 0 for all

i, j = 1, n , yields also [Ki, Kj] = 0 for all i, j = 1, n. Taking into account

that dimM2n = 2n one obtains the equality (ω(2))n = 0 identically on

M2n. This makes it possible to formulate the following Galisau-Reeb result.

Theorem 2.1. Assume that an element h ∈ G∗ is chosen to be regular and

a Lie algebra G of invariants on M2n is abelian. Then there exist differential

1-forms h
(1)
j ∈ Λ1(U(Mn

h )), j = 1, n, where U(Mn
h ) is some open neighborhood

of the integral submanifold Mn
h ⊂M2n, satisfying the following properties:

i) ω(2)
∣∣
U(Mn

h
)
=

∑n

j=1 dHj ∧ h
(1)
j ;

ii) the exterior differentials dh
(1)
j ∈ Λ2(U(Mn

h )) belong to the ideal I(G)
in the Grassmann algebra Λ(U(Mn

h )), generated by 1-forms dHj ∈Λ1(U(Mn
h )),

j = 1, n.

JProof. Consider the following identity on M2n :

(⊗n
j=1iKj

)(ω(2))n+1 = 0 = ±(n + 1)!(∧n
j=1dHj) ∧ ω(2), (2.2)

which implies that the 2-form ω(2) ∈ I(G) . Whence, one can find 1-forms

h
(1)
j ∈Λ1(U(Mn

h )), j = 1, n, satisfying the condition

ω(2)
∣∣∣
U(Mn

h
)
=

n∑

j=1

dHj ∧ h
(1)
j . (2.3)

Since ω(2) ∈ Λ2(U(Mn
h )) is nondegenerate on M2n, it follows that all 1-forms

h
(1)
j , j = 1, n, in (2.3) are independent on U(Mn

h ), proving part i) of the

theorem. As dω(2) = 0 on M2n, from (2.3) one gets that

n∑

j=1

dHj ∧ dh
(1)
j = 0 (2.4)
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on U(Mn
h ), hence it is obvious that dh

(1)
j ∈ I(G) ⊂ Λ(U(Mn

h )) for all j = 1, n,

proving part ii) of the theorem.I

Now we proceed to study properties of the integral submanifold Mn
h ⊂M2n

of the ideal I(G) in the Grassmann algebra Λ(U(Mn
h )). In general, the integral

submanifold Mn
h is completely described [16] by means of the imbedding

πh : Mn
h →M2n (2.5)

and using this, one can reduce all vector fields Kj ∈ Γ(M2n), j = 1, n,

on the submanifold Mn
h ⊂ M2n, since they are all evidently in its tangent

space. If Kj ∈ Γ(Mn
h ), j = 1, n, are the corresponding pulled-back vector

fields Kj ∈ Γ(M2n), j = 1, n, then by definition, the equality

πh∗ ◦Kj = Kj ◦ πh (2.6)

holds for all j = 1, n. Similarly one can construct 1-forms h
(1)

j := π∗
h ◦ h

(1)
j ∈

Λ1(Mn
h ), j = 1, n, which are characterized by the following Cartan-Jost [16]

theorem.

Theorem 2.2. The following assertions are true:

i) the 1-forms h
(1)

j ∈ Λ1(Mn
h ), j = 1, n, are independent on Mn

h ;

ii) the 1-forms h
(1)

j ∈ Λ1(Mn
h ), j = 1, n, are exact on Mn

h and satisfy

h
(1)

j (Kj) = δij , i, j = 1, n.

JProof. As the ideal I(G) is by definition vanishing on Mn
h ⊂ M2n

and closed on U(Mn
h ) , the integral submanifold Mn

h is well defined in the

case of a regular element h ∈ G∗. This implies that the imbedding (2.5) is

nondegenerate on Mn
h ⊂ M2n, or the 1-forms h

(1)

j := π∗
h ◦ h

(1)
j , j = 1, n, will

persist in being independent if they are 1-forms h
(1)
j ∈ Λ1(U(Mn

h )), j = 1, n,

proving part i) of the theorem. Using property ii) of Theorem 2.1, one sees

that on the integral submanifold Mn
h ⊂M2n all 2-forms dh

(1)

j = 0, j = 1, n.

Consequently, owing to the Poincaré lemma [1,16], the 1-forms h
(1)

j = dtj ∈
Λ1(Mn

h ), j = 1, n, for some mappings tj : Mn
h → R, j = 1, n, defining global

coordinates on an appropriate universal covering of Mn
h . Consider now the

following identity based on the representation (2.3):

iKj
ω(2)

∣∣∣
U(Mn

h
)
= −

n∑

i=1

h
(1)
i (Kj) dHi := −dHj , (2.7)

13



which holds for any j = 1, n. As all dHj ∈ Λ1(U(Mn
h )), j = 1, n, are indepen-

dent, from (2.7) one infers that h
(1)
i (Kj) = δij for all i, j = 1, n. Recalling

now that for any i = 1, n , Ki ◦ πh = πh∗ ◦ Ki, one readily computes

that h
(1)

i (Kj) = π∗
hh

(1)
i (Kj) := h

(1)
i (πh∗ ◦Kj) := h

(1)
i (Kj ◦ πh) = δij for all

i, j = 1, n, proving part ii) of the theorem.I

The following is a simple consequence of Theorem 2.2:

Corollary 2.3. Suppose that the vector fields Kj ∈ Γ(M2n), j = 1, n,

are parametrized globally along their trajectories by means of the corresponding

parameters tj : M2n → R, j = 1, n, that is on the phase space M2n

d/dtj := Kj (2.8)

for all j = 1, n. Then the following important equalities hold (up to constant

normalizations) on the integral submanifold Mn
h ⊂M2n:

tj |Mn
h

= tj , (2.9)

where 1 ≤ j ≤ n.

2.3. We consider a completely integrable via Liouville-Arnold Hamilto-

nian system on the cotangent canonically symplectic manifold (T ∗(Rn), ω(2)),

n ∈ Z+, possessing exactly n ∈ Z+ functionally independent and Poisson

commuting algebraic polynomial invariants Hj : T ∗(Rn) → R, j = 1, n. Due

to the Liouville-Arnold theorem this Hamiltonian system can be completely in-

tegrated by quadratures in quasi-periodic functions on its integral submanifold

when taken compact. It is equivalent to the statement that this compact in-

tegral submanifold is diffeomorphic to a torus Tn, that makes it possible to

formulate the problem of integrating the system by means of searching the cor-

responding integral submanifold imbedding mapping πh : Mn
h −→ T ∗(Rn),

where by definition

Mn
h := {(q, p) ∈ T ∗(Rn) : Hj(q, p) = hj ∈ R, j = 1, n}.

(2.10)

Since Mn
h ' Tn, and the integral submanifold (2.10) is invariant subject to all

Hamiltonian flows Kj : T ∗(Rn)→ T (T ∗(Rn)), j = 1, n, where

iKj
ω(2) = −dHj , (2.11)

14



there exist corresponding ”action-angle” - coordinates (ϕ, γ) ∈ (Tn
γ , Rn) on the

torus Tn
γ w Mn

h , specifying its imbedding πγ : Tn
γ → T ∗(Rn) by means of a

set of smooth functions γ ∈ D(Rn), where

T
n
γ := {(q, p) ∈ T ∗(Rn) : γj(H) = γj ∈ R, j = 1, n}. (2.12)

The induced by (2.12) mapping γ : Rn 3 h→ Rn is of great interest for many

applications and was studied still earlier by Picard and Fuchs subject to the

corresponding differential equations it satisfies:

∂γj(h)/∂hi = Fij(γ; h), (2.13)

where h ∈ Rn and Fij : Rn × Rn → R, i, j = 1, n, are some smooth

almost everywhere functions. In the case when the right hand side of (2.13)

is a set of algebraic functions on Cn× Cn 3 (γ; h), all Hamiltonian flows

Kj : T ∗(Rn)→ T (T ∗(Rn)), j = 1, n, are said to be algebraically completely in-

tegrable in quadratures. In general equations like (2.13) were studied in [19,31],

a recent example one can find in [18]. It is clear enough that Picard-Fuchs

equations (2.13) are related with the associated canonical transformation of

the symplectic 2-form ω(2) ∈ Λ2(T ∗(Rn)) in a neighborhood U(Mn
h ) of

the integral submanifold Mn
h ⊂ T ∗(Rn). To make it more precise, denote

ω(2)(q, p) = dpr∗α(1)(q; p), where for (q, p) ∈ T ∗(Rn)

α(1)(q; p) :=
n∑

j=1

pjdqj =< p, dq >∈ Λ1(Rn) (2.14)

is the canonical Liouville 1-form on Rn, < ·, · > is the usual scalar product

in Rn, pr : T ∗(Rn) → Rn is the bundle projection. One can now define a

mapping

dSq : R
n → T ∗

q (Rn), (2.15)

such that dSq(h) ∈ T ∗
q (Rn) is an exact 1-form for all q ∈ Mn

h and h ∈ Rn,

yielding

(dSq)
∗(dpr∗α(1)) = (dSq)

∗ω(2) := d2Sq ≡ 0. (2.16)

Thereby the mapping (2.15) defines a so called generating function [1, 2] Sq :

Rn → R, satisfying on Mn
h the relationship

pr∗α(1)(q; p)+ < t, dh >= dSq(h), (2.17)
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where t ∈ Rn is the set of evolutionprameters. From (2.17) one gets right away

that equality

Sq(h) =

∫ q

q(0)

< p, dq >

∣∣∣∣
Mn

h

(2.18)

holds for any q, q(0) ∈ Mn
h . On the other hand one can define a one more

generating function Sµ : Rn → R, such that

dSµ : R
n → T ∗

µ(Mn
h ), (2.19)

where µ ∈ Mn
h w ⊗n

j=1S1
j are global separable coordinates existing on Mn

h

owing to the Liouville-Arnold theorem. Thus one can write down the following

canonical relationsip:

< w, dµ > + < t, dh >= dSµ(h), (2.20)

where wj := wj(µj ; h) ∈ T ∗
µj

(S1
j ) for every j = 1, n. Whence one follows readily

that

Sµ(h) =

n∑

j=1

∫ µj

µ
(0)
j

w(λ; h)dλ, (2.21)

satisfying on Mn
h ⊂ T ∗(Rn) the following relationship

dSµ + dLµ = dSq|q=q(µ;h) (2.22)

for some mapping Lµ : Rn → R. As a result of (2.21) and (2.22) one gets that

the following important expressions

ti = ∂Sµ(h)/∂hi, < p, ∂q/∂µi >= wi + ∂Lµ/∂µi (2.23)

hold for all i = 1, n. A construction similar to the above can be done subject

to the imbedded torus Tn
γ ⊂ T ∗(Rn) :

dS̃q(γ) :=

n∑

j=1

pjdqj +

n∑

i=1

ϕidγi, (2.24)
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where owing to (2.15) S̃q(γ) := Sq(ξ · γ), ξ · γ(h) = h, for all (q; γ) ∈ U(Mn
h ).

For angle coordinates ϕ ∈ Tn
γ one obtains from (2.24) that

ϕi = ∂S̃q(γ)/∂γi (2.25)

for all i = 1, n. As ϕi ∈ R/2πZ, i = 1, n, from (2.26) one derives that

1

2π

∮

σ
(h)
j

dϕi = δij =
1

2π

∂

∂γi

∮

σ
(h)
j

dS̃q(γ) =
1

2π

∂

∂γi

∮

σ
(h)
j

< p, dq >

(2.26)

for all canonical cycles σ
(h)
j ⊂ Mn

h , j = 1, n, constituting a basis of the one

dimensional homology group H1(Mn
h ; Z). Thereby, owing to (2.26), one follows

that for all i = 1, n ”action” variables can be found as

γi =
1

2π

∮

σ
(h)
i

< p, dq > (2.27)

Recall now that Mn
h ' Tn

γ are diffeomorphic also to ⊗n
j=1S1

j , where S1
j , j = 1, n

, are some one-dimensional real circles. The evolution along any of vector fields

Kj : T ∗(Rn) → T (T ∗(Rn)), j = 1, n, on Mn
h ⊂ T ∗(Rn) is known [1, 2] to

be a linear winding around the torus Tn
γ , that can be interpreted also this way:

the above introduced independent of each other global coordinates on circles

S1
j , j = 1, n, are such that the resulting evolution undergoes a quasiperiodic

motion. These coordinates being still called Hamilton-Jacobi ones prove to be

very important for accomplishing the complete integrability by quadratures via

solving the corresponding Picard-Fuchs type equations.

Let us denote these separable coordinates on the integral submanifold Mn
h

' ⊗n
j=1S1

j by µj ∈ S1
j , j = 1, n, and define the corresponding imbedding

mapping πh : Mn
h → T ∗(Rn) as

q = q(µ; h), p = p(µ; h). (2.28)

There exist two important cases subject to the imbedding (2.28) .

The first case is related with the integral submanifold Mn
h ⊂ T ∗(Rn) which

can be parametrized as a manifold by means of the base coordinates q ∈ R
n of

the cotangent bundle T ∗(Rn). This can be explained as follows: the canonical

Liouville 1-form α(1) ∈ Λ1(Rn), in accordance with the diagram

17



T ∗( Mn
h ) ' T ∗(⊗n

j=1S1
j )

π∗

←− T ∗(Rn)

pr ↓ pr ↓ pr ↓
Mn

h ' ⊗n
j=1S1

j

π→ Rn

(2.29)

is mapped by the imbedding mapping π = pr · πh : Mn
h → Rn not depending

on a set of parameters h ∈ Rn, into the 1-form

α
(1)
h = π∗α(1) =

n∑

j=1

wj(µj ; h)dµj , (2.30)

where (µ, w) ∈ T ∗(⊗n
j=1S1

j) ' ⊗n
j=1T

∗(S1
j ). The imbedding mapping π :

Mn
h → Rn due to the equality (2.30) makes the function Lµ : Rn → R to be

zero giving rise to the generating function Sµ : Rn → R, enjoying the condition

dSµ = dSq|q=q(µ;h) , (2.31)

where as before

Sµ(h) =

n∑

j=1

pjdqj +

n∑

j=1

tjdhj (2.32)

and det ||∂q(µ; h)/∂µ|| 6= 0 almost everywhere on Mn
h for all h ∈ Rn. Similarly

to (2.23), one gets from (2.32) that

tj = ∂Sµ(h)/∂hj (2.33)

for j = 1, n. Concerning the second part of the imbedding mapping (2.28) we

arrive due to the equality (2.30) at the following simple result:

pi =

n∑

j=1

wj(µj ; h)∂µj/∂qi, (2.34)

where i = 1, n and det ||∂µ/∂q|| 6= 0 almost everywhere on π(Mn
h ) due to the

local invertibility of the imbedding mapping π : Mn
h → Rn. Thus, we can claim

that the problem of complete integrability in the first case is solved iff the only

imbedding mapping π : Mn
h → Rn ⊂ T ∗(Rn) is constructed. This case was in

detail considered in [11], where the corresponding Picard-Fuchs type equations
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were built based on a one extension of Galisot-Reeb and Francoise results [18].

Namely, similarly to (2.13), these equations are defined as follows:

∂wj(µj ; h)/∂hk = Pkj(µj , wj ; h), (2.35)

where Pkj : T ∗(⊗n
j=1S1

j )× Cn → C, k, j = 1, n, are some algebraic functions of

their arguments.

Concerning the second case when the integral submanifold Mn
h ⊂ T ∗(Rn)

can not be imbedded almost everywhere into the base space Rn ⊂ T ∗(Rn), the

relationship like (2.32) doesn’t take place, and we are forced to consider the

usual canonical transformation from T ∗(Rn) to T ∗(Rn) based on a mapping

dLq : ⊗n
j=1S1

j → T ∗(Rn), where Lq : ⊗n
j=1S1

j → R enjoys for all µ ∈ ⊗n
j=1S1

j w

Mn
h 3 q the following relationship :

pr∗α(1)(q; p) =

n∑

j=1

wj dµj + dLq(µ). (2.36)

In this case we can derive for any µ ∈ ⊗n
j=1S1

j the introduced before hereditary

generating function Lµ : Rn → T ∗(⊗n
j=1S1

j ) as

dLµ = dLq |q=q(µ;h) , (2.37)

satisfying evidently the following canonical transformation condition:

dSq(h) =

n∑

j=1

wj( µj ; h) dµj +

n∑

j=1

tjdhj + dLµ(h), (2.38)

for almost all µ ∈ ⊗n
j=1S

1
j and h ∈ R

n . Based on (2.38) one can derive the

following relationships:

∂Lµ(h)/∂hj = < p, ∂q/∂hj >|
Mn

h

(2.39)

for all j = 1, 2, µ ∈ ⊗n
j=1S

1
j and h ∈ R

n. Whence the following important

analytical result

ts =

n∑

j=1

∫ µj

µ
(0)
j

(∂wj(λ; h)/∂hs)dλ,

n∑

j=1

pj(µ; h)(∂qj/∂µs) = ws + ∂Lµ(h)/∂µs (2.40)
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holds for all s = 1, 2 and µ, µ(0) ∈ ⊗n
j=1S1

j with parameters h ∈ Rn being

fixed. Thereby we have found a natural generalization of the relationships (2.34)

subject to the extended integral submanifold imbedding mapping πh : Mn
h →

T ∗(Rn) in the form (2.28).

Assume now that functions wj : C× C
n→ C , j = 1, n, satisfy in general

Picard-Fuchs equations like (2.35), having the following [3] algebraic solutions:

w
nj

j +

nj−1∑

k=0

cj,k(λ; h)wk
j = 0, (2.41)

where cj,k : C× C
n→ C , k = 0, nj − 1, j = 1, n, are some polynomials in

λ ∈ C. Each algebraic curve of (2.41) is known to be in general topologically

equivalent due to the Riemann theorem [20] to some Riemannian surface Γ
(j)
h ,

of genus gj ∈ Z+, j = 1, n. Thereby , one can realize the local diffeomorphism

ρ : Mn
h → ⊗n

j=1Γ
(j)
h , mapping homology group basis cycles σ

(h)
j ⊂ Mn

h ,

j = 1, n, into homology subgroup H1(⊗n
j=1Γ

(j)
h ; Z) basis cycles σj(Γh) ⊂ Γ

(j)
h ,

j = 1, n, satisfying the following relationships:

ρ( σ
(h)
j ) =

n∑

k=1

njk σk(Γh), (2.42)

where njk ∈ Z, k = 1, j and j = 1, n, are some fixed integers. Based on

(2.42) and (2.37) one can write down, for instance, expressions (2.27) as follows:

γi =
1

2π

n∑

j=1

nij

∮

σj(Γh)

wj(λ; h)dλ, (2.43)

where i = 1, n. Subject to the evolution on Mn
h ⊂ T ∗(Rn) one can easily

obtain from (2.39) that

dti =

n∑

j=1

(∂wj(µj ; h)/∂hi)dµj (2.44)

at dhi = 0 for all i = 1, n, giving rise evidently to a global τ−parametrization

of the set of circles ⊗n
j=1S1

j ⊂ ⊗n
j=1Γ

(j)
h , that is one can define some inverse

algebraic functions to Abelian type integrals (2.37) as

µ = µ(τ ; h), (2.45)
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where as before, τ = (t1, t2, ..., tn) ∈ Rn is an a vector of evolution parameters.

Recalling now expressions (2.28) for integral submanifold mapping πh : Mn
h →

T ∗(Rn), one can at last write down final expressed by ”quadratures” mappings

for evolutions on Mn
h ⊂ T ∗(Rn) as follows:

q = q(µ(τ ; h)) = q̃(τ ; h), p = p(µ(τ ; h)) = p̃(τ ; h), (2.46)

where obviously, a vector (q̃, p̃) ∈ T ∗(Rn) is quasiperiodic in each variable

ti ∈ τ, i = 1, n.

Theorem 2.4. Every completely integrable Hamiltonian system admitting

an algebraic submanifold Mn
h ⊂ T ∗(Rn) pessesses a separable canonical trans-

formation (2.38) which is described by differential algebraic Picard-Fuchs type

equations whose solution is a set of algebraic curves (2.41).

Therefore, the main ingredient of this scheme of integrability by quadratures

is finding the Picard-Fuchs type equations (2.35) corresponding to the inte-

gral submanifold imbedding mapping (2.28) depending in general on Rn 3 h-

parameters for the case when the integral submanifold Mn
h ⊂ T ∗(Rn) can not

be imbedded into the base space Rn ⊂ T ∗(Rn) of the phase space T ∗(Rn).

This is a subject

Based now on Theorem 2.1 one can find 1-forms h
(1)
j ∈ Λ1(T ∗(Rn)), j = 1, n,

enjoying the following identity on T ∗(Rn) :

ω(2)(q, p) :=

n∑

j=1

dpj ∧ dqj =

n∑

j=1

dHj ∧ h
(1)
j . (2.47)

The 1-forms h
(1)
j ∈ Λ1(T ∗(Rn)), j = 1, n, possess the stated before important

propertiy : pullbacked to the integral submanifold (2.10) gives rise to the global

linearization

π∗
hh

(1)
j := h̄

(1)
j = dtj (2.48)

where h̄
(1)
j ∈ Λ1(Mn

h ), and πh∗d/dtj = Kj · πh for all j = 1, n. The

expressions (2.48) combined with ones of (2.44) give rise easily to the following

set of relationships

h̄
(1)
j =

n∑

j=1

(∂wj(µj ; h)/∂hi)dµj (2.49)
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at dhj = 0 for all j = 1, n on Mn
h w ⊗n

j=1S1
j ⊂ ⊗n

j=1Γ
(j)
h for all j = 1, n.

Since we are interested in the integral submanifold imbedding mapping (2.25)

being locally diffeomorphic in a neighborhood U(Mn
h ) ⊂ T ∗(Rn), the Jacobian

det ||∂q(µ; h)/∂µ|| 6= 0 almost every where in U(Mn
h ). On the other hand, as

it was proved in [4], the set of 1-forms h̄
(1)
j ∈ Λ1(Mn

h ), j = 1, n , can be in

general, represented in U(Mn
h ) as

h̄
(1)
j =

n∑

k=1

h̄
(1)
jk (q, p)dqk

∣∣∣
Mn

h

, (2.50)

where h̄
(1)
jk : T ∗(Rn) → R, k, j = 1, n, are some algebraic expressions of their

arguments. Thereby, one easily finds from (2.50) and (2.49) that

∂wi(µi; h)/∂hj =

n∑

k=1

h̄
(1)
jk (q(µ; h), p(µ; h))(∂qk(µ; h)/∂µi)

(2.51)

for all i, j = 1, n. Subject to p-variables in (2.51) we must owing to (2.40) use

the expressions

n∑

j=1

pj(µ; h)(∂qj/∂µs) = ws + ∂Lµ(h)/∂µs, (2.52)

∂Lµ(h)/∂hj = < p, ∂q/∂hj >|
Mn

h

,

being true for s = 1, n and all µ ∈ ⊗n
j=1Sj , h ∈ Rn in the neighborhood

U(Mn
h ) ⊂ T ∗(Rn) chosen before. Thereby, we arrived at the following form

of equations (2.51):

∂wi(µi; h)/∂hj = P̄ji(µ, w; h), (2.53)

where for all i, j = 1, n expressions

P̄ji(µ, w; h) :=

n∑

k=1

h̄
(1)
jk (q(µ; h), p(µ; h))∂qk/∂µi) (2.54)

depend correspondingly only on Γ
(i)
h 3 (µi, wi)- variables for each i ∈ {1, n}

and all j = 1, n. This condition can be evidently written down as follows:

∂P̄ji(µ, w; h)/∂µk = 0, ∂P̄ji(µ, w; h)/∂wk = 0 (2.55)
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for j, i 6= k ∈ {1, n } at almost all µ ∈ ⊗n
j=1S1

j and h ∈ Rn. The set of condi-

tions (2.51) gives rise in general to a system of algebraic-differential equations

subject to the imbedding mapping prπh : Mn
h → Rn defined analytically by

(2.28) and the generating function (2.37). As a result of solving these equa-

tions we obtain evidently owing to (2.53) and (2.55) the following system of

Picard-Fuchs type equations:

∂wi(µi; h)/∂hj = Pji(µi, wi; h) (2.56)

where, in general, mappings

Pji : Γ
(i)
h × R

n → C (2.57)

are some algebraic expressions. Since the set of algebraic curves (2.41) must

enjoy the system (2.56), we can retrieve this set solving the Picard-Fuchs type

equations (2.56). The latter gives rise due to (2.39) and (2.28) to the integrabil-

ity of all flows on Mn
h ⊂ T ∗(Rn) by quadratures as was mentioned in Chapter

1.

Theorem 2.5. Let there be given a completely integrable Hamiltonian sys-

tem on the coadjoint manifold T ∗(Rn) whose integral submanifold Mn
h ⊂ T ∗(Rn)

is described by Picard-Fuchs type algebraic equations (2.56). The corresponding

imbedding mapping πh : Mn
h → T ∗(Rn) (2.28) is a soulution of a compati-

bility condition subject to the differential-algebraic relationships (2.55) on the

canonical transformations generating function (2.37).

To show that the scheme described above really leads to an algorithmic

procedure of constructing the Picard-Fuchs type equations (2.56) and the cor-

responding integral submanifold imbedding mapping πh : Mn
h → T ∗(Rn) in

the form (2.28), we apply it below in the Chapter 6 to some Hamiltonian sys-

tems including a so called truncated Focker-Plank Hamiltonian system on the

canonically symplectic cotangent space T ∗(Rn). Making use of the represen-

tations (2.21) and (2.28) and equation (2.31), we have shown above that the

set of 1-forms (2.30) is reduced to the following purely differential- algebraic

relationships on M2n
h,τ :

∂wi(µi; h)/∂hj = Pji(µi, wi; h), (2.58)
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generalizing similar ones of [31,18], where the characteristic functions Pji :

T ∗(Mn
h )→ R, i, j = 1, n, are defined as follows:

Pji(µi, wi; h) := P̄ji(µ, w; h)
∣∣
Mn

h

. (2.59)

It is clear that the above set of purely differential - algebraic relationships (2.33)

and (2.34) makes it possible to write down explicitly some first order compat-

ible differential-algebraic equations, whose solution yields the first half of the

desired imbedding (2.5) for the integral submanifold Mn
h ⊂ M2n in an open

neighborhood M2n
h,τ ⊂ M2n. As a result of the above computations one can

formulate the following main theorem.

Theorem 2.6. The imbedding (2.5) for the integral submanifold Mn
h ⊂

M2n (compact and connected), parametrized by a regular parameter h ∈ G∗, is

an algebraic solution (up to diffeomorphism) to the set of characteristic Picard-

Fuchs type equations (2.35) on T ∗(Mn
h ), and can be represented in general case

[19] in the following algebraic-geometric form:

w
nj

j +

n∑

s=1

cjs(λ; h)w
nj−s

j = 0, (2.60)

where cjs : R × G∗ → R, s, j = 1, n are algebraic expressions, depending only

on the functional structure of the original abelian Lie algebra G of invariants on

M2n. In particular, if the right-hand side of the characteristic equations (2.35)

is independent of h ∈ G∗, then this dependence will be linear in h ∈ G∗.
It should be noted here that some ten years ago an attempt was made in

[18,19] to describe the explicit algebraic form of the Picard-Fuchs type equations

(2.35) by means of straightforward calculations for the well known completely

integrable Kowalewskaya top Hamiltonian system. The idea suggested in [18,19]

was in some aspects very close to that devised independently and thoroughly

analyzed in [11] which did not consider the explicit form of the algebraic curves

(2.37) starting from an abelian Lie algebra G of invariants on a canonically

symplectic phase space M2n.

As is well-known, a set of algebraic curves (2.37), prescribed via the above

algorithm, to a given a priori abelian Lie algebra G of invariants on the

canonically symplectic phase space M2n = T ∗(Rn) can be realized by means

of a set of nj−sheeted Riemannian surfaces Γ
nj

h , j = 1, n, covering the
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corresponding real-valued cycles S1
j , j = 1, n, which generate the corresponding

homology group H1(T
n; Z) of the Arnold torus Tn ' ⊗n

j=1S1
jdiffeomorphic to

the integral submanifold Mn
h ⊂M2n.

Thus, upon solving the set of algebraic equations (2.37) with respect to

functions wj : S1
j × G∗ → R, j = 1, n, from (2.29) one obtains a vector

parameter τ = (t1, ..., tn) ∈ Rn on Mn
h explicitly described by means of the

following Abelian type equations:

tj =

n∑

s=1

∫ µs

µ0
s

dλ ∂ws(λ; h)/∂hj = (2.61)

=

n∑

s=1

∫ µs

µ0
s

dλ P̄js(λ, ws; h),

where j = 1, n, (µ0; h) ∈ (⊗n
j=1Γ

nj

h ) × G∗. Using the expression (2.28) and

recalling that the generating function S : Mn
h ×Rn → R is a one-valued map-

ping on an appropriate covering space (M̄n
h ; H1(M

n
h ; Z)), one can construct via

the method of Arnold [4] the so called action-angle coordinates on Mn
h . Denote

the basic oriented cycles on Mn
h by σj ⊂ Mn

h , j = 1, n. These cycles together

with their duals generate homology group H1(M
n
h ; Z) ' H1(T

n; Z) =⊕n
j=1Zj .

In virtue of the diffeomorphism Mn
h ' ⊗n

j=1S1
j described above, there is a

one-to-one correspondence between the basic cycles of H1(M
n
h ; Z) and those

on the algebraic curves Γ
nj

h , j = 1, n, given by (2.37):

ρ : H1(M
n
h ; Z)→ ⊕n

j=1Zjσh,j , (2.62)

where σh,j ⊂ Γ
nj

h , j = 1, n are the corresponding real-valued cycles on the

Riemann surfaces Γ
nj

h , j = 1, n.

Assume that the following meanings of the mapping (2.39) are prescribed:

ρ(σi) := ⊕n
j=1nij σh,j (2.63)

for each i = 1, n, where nij ∈ Z, i, j = 1, n - some fixed integers. Then

following the Arnold construction [4,18], one obtains the set of so called action-

25



variables on Mn
h ⊂M2n :

γj: :=
1

2π

∮

σj

dS =
n∑

s=1

njs

∮

σh,s

dλ ws(λ; h), (2.64)

where j = 1, n . It is easy to show [4,16], that expressions (2.41) naturally

define an a.e. differentiable invertible mapping

ξ : G∗ → R
n, (2.65)

which enables one to treat the integral submanifold Mn
h as a submanifold Mn

γ

⊂M2n, where

Mn
γ := {u ∈M2n : ξ(h) = γ ∈ R

n}. (2.66)

But, as was demonstrated in [18,32], the functions (2.43) do not in general gen-

erate a global foliation of the phase space M2n,as they are connected with both

topological and analytical constraints. Since the functions (2.41) are evidently

also commuting invariants on M2n, one can define a further canonical trans-

formation of the phase space M2n,generated by the following relationship on

M2n
h,τ :

n∑

j=1

wj dµj +

n∑

j=1

ϕj dγj = dS(µ; γ), (2.67)

where ϕ = (ϕ1, ..., ϕn) ∈ Tn are the so called angle-variables on the torus

Tn ' Mn
h and S : Mn

γ × Rn → R is the corresponding generating function.

Whence it follows easily from (2.28) and (2.38) that

ϕj :=∂S(µ; γ)/∂γj =
n∑

s=1

∂S(µ; γ(h))/∂hs ∂hs/∂γj = (2.68)

=

n∑

s=1

tsωsj(γ),
1

2π

∮

σj

dϕk =δjk ,

where Ω := {ωsj : Rn → R, s, j = 1, n }is the so called [4] frequency matrix,

which is a.e. invertible on the integral submanifold Mn
γ ⊂M2n. As an evident

result of (2.45), we claim that the evolution of any vector field Ka ∈ Γ(M2n) for

a ∈ G on the integral submanifold Mn
γ ⊂M2n is quasiperiodic with a set of
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frequencies generated by the matrix Ω
a.e.∈ Aut(Rn), defined above. As exam-

ples showing the effectiveness of the above method of construction of integral

submanifold imbeddings for abelian integrable Hamiltonian systems, one can

verify the Liouville-Arnold integrability of all Henon-Heiles and Neumann type

systems described in detail in [21,22]; however, we shall not dwell on this here.

3 Integral submanifold imbedding problem for

a nonabelian Lie algebra of invariants.

3.1. We shall assume below that there is given a Hamiltonian vector field K ∈
Γ(M2n) on the canonically symplectic phase space M2n = T ∗(Rn), n ∈ Z+,

which is endowed with a nonabelian Lie algebra G of invariants, satisfying all

the conditions of the Mishchenko-Fomenko Theorem 1.5, that is

dimG+rankG = dimM2n . (3.1)

Then, as was proved above, an integral submanifold M r
h ⊂ M2n at a

regular element h ∈ G∗ is rankG =r−dimensional and diffeomorphic (when

compact and connected) to the standard r-dimensional torus Tr ' ⊗r
j=1S1

j .

It is natural to ask the following question: How does one construct the corre-

sponding integral submanifold imbedding

πh : M r
h →M2n , (3.2)

which characterizes all possible orbits of the dynamical system K ∈ Γ(M2n)?

Having gained some experience in constructing the imbedding (3.2) in the

case of the abelian Liouville-Arnold theorem on integrability by quadratures,

we proceed below to study the integral submanifold M r
h ⊂ M2n by means of

Cartan’s theory [3,12,16,22] of the integrable ideals in the Grassmann algebra

Λ(M2n). Let I(G∗) be an ideal in Λ(M2n), generated by independent differ-

entials dHj ∈ Λ1(M2n) , j = 1, k, on an open neighborhood U(M r
h), where by

definition, r = dimG. The ideal I(G∗) is obviously Cartan integrable [23,16]

with the integral submanifold M r
h ⊂ M2n (at a regular element h ∈ G∗) ,
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on which it vanishes, that is π∗
h I(G

∗) = 0. The dimension dimM r
h = dimM2n-

dimG = r = rankG due to the condition (3.1) imposed on the Lie algebra G
.It is useful to note here that owing to the inequality r ≤ k for the rank G
, one readily obtains from (3.1) that dimG =k ≥ n. Since each base element

Hj ∈ G, j = 1, k, generates a symplectically dual vector field Kj ∈ Γ(M2n),

j = 1, k, one can try to study the corresponding differential system K(G)
which is also Cartan integrable on the entire open neighborhood U(M r

h)

⊂ M2n. Denote the corresponding dimension of the integral submanifold by

dimMk
h = dim K(G) =k. Consider now an abelian differential system K(Gh) ⊂

K(G), generated by the Cartan subalgebra Gh ⊂ G and its integral submani-

fold M̄ r
h ⊂ U(M r

h). Since the Lie subgroup Gh = expGh acts on the integral

submanifold M r
h invariantly (see Chapter 1) and dim M̄ r

h = rank G =r, it

follows that M̄ r
h = M r

h . On the other hand, the system K(Gh) ⊂ K(G) by

definition, meaning that the integral submanifold M r
h is an invariant part of

the integral submanifold Mk
h ⊂ U(M r

h) with respect to the Lie group G = expG
- action on Mk

h . In this case one has the following result.

Lemma 3.1. There exist just (n-r)∈ Z+ vector fields F̃j ∈ K(G)/K(Gh),

j = 1, n− r, for which

ω(2)(F̃i, F̃j) = 0 (3.3)

on U(M r
h) for all i, j = 1, n− r.

JProof. Obviouslthe matrix ω(K̃) := {ω(2)(K̃i, K̃j) : i, j = 1, k} has

on U(M r
h) the rank ω(K̃) = k − r, since dimR ker(π∗

hω(2)) = dimR(πh∗

K(Gh)) = r on M r
h at the regular element h ∈ G∗. Let us now complexify the

tangent space T (U(M r
h)) using its even dimensionality. Whence one can easily

deduce that on U(M r
h) there exist just (n − r) ∈ Z+ vectors (not vector

fields!) K̃C
j ∈ KC(G)/KC(Gh), j = 1, n− r, from the complexified [24] factor

space KC(G)/KC(Gh).To show this, let us reduce the skew-symmetric matrix

ω(K̃) ∈ Hom(Rk−r) to its selfadjoint equivalent ω(K̃C) ∈ Hom(Cn−r), having

taken into account that dimR Rk−r = dimR Rk+r−2r = dimR R2(n−r) = dimC

C
n−r . Let now fC

j ∈ C
n−r, j = 1, n− r, be eigenvectors of the nondegenerate

selfadjoint matrix ω(K̃C) ∈ Hom(Cn−r), that is

ω(K̃C) fC

j = λ̃jf
C

j , (3.4)
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where λ̃j ∈ R, j = 1, n− r, and for all i, j = 1, n− r, < fC
i , fC

j >= δi,j . The

above obviously means that in the basis {fC
j ∈ KC(G)/KC(Gh) : j = 1, n− r}

the matrix ω(K̃C) ∈ Hom(Cn−r) is strictly diagonal and representable as

ω(K̃C) =

n−r∑

j=1

λ̃jf
C

j ⊗C fC

j , (3.5)

where ⊗C is the usual Kronecker tensor product of vectors from C
n−r. Owing

to the construction of the complexified matrix ω(K̃C) ∈ Hom(Cn−r), one sees

that the space KC(G)/KC(Gh) ' C
n−r carries a Kähler structure [24] with

respect to which the following expressions

ω(K̃) = Imω(K̃), < ·, · >R= Re < ·, · > (3.6)

hold. Making use now of the representation (3.5) and expressions (3.6), one

can find vector fields F̃j ∈ K(G)/K(Gh), j = 1, n− r, such that

ω(F̃ ) = Imω(F̃ C) = J, (3.7)

holds on U(M r
h) , where J ∈ Sp(Cn−r) is the standard symplectic matrix,

satisfying the complex structure [24] identity J2 = −I. . In virtue of the

normalization conditions < fC
j , fC

j >= δi,j , for all i, j = 1, n− r, one easily

infers from (3.7) that ω(2)(F̃i, F̃j) = 0 for all i, j = 1, n− r, where by

definition

F̃j := ReF̃ C

j (3.8)

for all j = 1, n− r, and this proves the lemma.I

Assume now that the Lie algebra G of invariants on M2n has been split

into a direct sum of subspaces as

G = Gh ⊕ G̃h , (3.9)

where Gh is the Cartan subalgebra at a regular element h ∈ G∗ (being abelian)

and G̃h ' G /Gh is the corresponding complement to Gh. Denote a basis

of Gh as {H̄i ∈ Gh : i = 1, r}, where dimGh = rankG = k ∈ Z+, and
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correspondingly, a basis of G̃h as {H̃j ∈ G̃h ' G/Gh : j = 1, k − r}. Then,

owing to the results of Chapter 1, the following relationships hold:

{H̄i, H̄j} = 0, h({H̄i, H̃s}) = 0 (3.10)

on the open neighborhood U(M r
h) ⊂ M2n for all i, j = 1, r and s =

1, k − r. We have as yet had nothing to say of expressions h({H̃s, H̃m}) for

s, m = 1, k − r. Making use of the representation (3.8) for our vector fields (if

they exist) F̃j ∈ K(G)/K(Gh), j = 1, n− r,one can write down the following

expansion:

F̃i =

k−r∑

j=1

cji(h)K̃j , (3.11)

where iK̃j
ω(2) := −dH̃j, cji : G∗ → R, i = 1, n− r, j = 1, k − r, are real-

valued functions on G∗,being defined uniquely as a result of (3.11). Whence it

clearly follows that there exist invariants f̃s : U(M r
h) → R, s = 1, n− r, such

that

−iF̃s
ω(2) =

k−r∑

j=1

cjs(h) dH̃j := df̃s , (3.12)

where f̃s =
∑k−r

j=1 cjs(h)H̃j , s = 1, n− r, holds on U(M r
h).

3.2. To proceed further , let us look at the following identity which is similar

to(2.2):

(⊗r
j=1iK̄j

)(⊗n−r
s=1 i

F̃s
)(ω(2))n+1 = 0 = ±(n + 1)!(∧r

j=1dH̄j)(∧n−r
s=1 d f̃s) ∧ ω(2),

(3.13)

on U(M r
h). Whence, the following result is easily obtained using Cartan theory

[3,16]:

Lemma 3.2. The symplectic structure ω(2) ∈ Λ2(U(M r
h)) has the following

canonical representation.:

ω(2)
∣∣∣
U(Mr

h
)
=

r∑

j=1

dH̄j ∧ h̄
(1)
j +

n−r∑

s=1

df̃s ∧ h̃(1)
s , (3.14)

where h̄
(1)
j , h̃

(1)
s ∈ Λ1(U(M r

h)), j = 1, r, s = 1, n− r.
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The expression (3.14) obviously means, that on U(M r
h) ⊂M2n the differen-

tial 1-forms h̄
(1)
j , h̃

(1)
s ∈ Λ1(U(M r

h)), j = 1, r, s = 1, n− r, are independent

together with exact 1-forms dH̄j , j = 1, r, and df̃s, s = 1, n− r.

Since dω(2) = 0 on M2n identically, from (3.14) one obtains that the differen-

tials dh̄
(1)
j , dh̃

(1)
s ∈ Λ2(U(M r

h)), j = 1, r, s = 1, n− r, belong to the ideal

I( G̃h) ⊂ I(G∗), generated by exact forms df̃s, s = 1, n− r, and dH̄j ,

j = 1, r, for all regular h ∈ G∗. Consequently, one obtains the following analog

of the Galisau-Reeb Theorem 2.1.

Theorem 3.3. Let a Lie algebra G of invariants on the symplectic space

M2n be nonabelian and satisfy the Mishchenko-Fomenko condition (3.1). At a

regular element h ∈ G∗ on some open neighborhood U(M r
h) of the integral

submanifold M r
h ⊂M2n there exist differential 1-forms h̄

(1)
j , j = 1, n, and

h̃
(1)
s , s = 1, n− r, satisfying the following properties:

i) ω(2)
∣∣
U(Mr

h
)
=

∑r

j=1 dH̄j∧ h̄
(1)
j +

∑n−r

s=1 df̃s∧ h̃
(1)
s ,

H̄j ∈ G, j = 1, r,is a basis of the Cartan subalgebra Gh ⊂ G (being abelian),

and f̃s ∈ G, s = 1, n− r, are invariants from the complementary space

G̃h ' G/Gh;

ii) 1-forms h̄
(1)
j ∈ Λ1(U(M r

h)), j = 1, r, and h̃
(1)
s ∈ Λ1(U(M r

h)),

s = 1, n− r, are exact on Mr
h and satisfy the equations: h̄

(1)
j (K̄i) = δi,j for

all i, j = 1, r, h̄
(1)
j (F̃s) = 0 and h̃

(1)
s (K̄j) = 0 for all j = 1, r, s = 1, n− r,

and h̃
(1)
s (F̃m) = δs,m for all s, m = 1, n− r.

JProof. Obviously we need to prove only the last statement ii). Making

use of Theorem 3.3. , one finds on the integral submanifold M r
h ⊂ M2n the

differential 2-forms dh̄
(1)
j ∈ Λ2(U(M r

h)), j = 1, r, and dh̃
(1)
s ∈ Λ2(U(M r

h)),

s = 1, n− r, are identically vanishing. This means in particular, owing to the

classical Poincaré lemma [1,4,16], that there exist some exact 1-forms dt̄h,j ∈
Λ1(U(M r

h)), j = 1, r, and dt̃h,s ∈ Λ1(U(M r
h)), s = 1, n− r, where t̄h,j :

M r
h → R, j = 1, r, and t̃h,s : M r

h → R, s = 1, n− r, are smooth

independent a.e. functions on M r
h ; they are one-valued on an appropriate

covering of the manifold M r
h ⊂ M2n and supply global coordinates on the

integral submanifold M r
h . Using the representation (3.14) , one can easily obtain

31



that

− i K̄i
ω(2)

∣∣∣
U(Mr

h
)
=

r∑

j=1

dH̄j h̄
(1)
j ( K̄i) +

n−r∑

s=1

df̃s h̃(1)
s (K̄i) = dH̄i

(3.15)

for all i = 1, r and

− iF̃m
ω(2)

∣∣∣
U(Mr

h
)
=

r∑

j=1

dH̄j h̄
(1)
j ( F̃m) +

n−r∑

s=1

df̃s h̃(1)
s (F̃m) = df̃m

(3.16)

for all m = 1, n− r. Whence, from (3.15) it follows on that on U(M r
h) ,

h̄
(1)
j ( K̄i) = δi,j , h̃(1)

s (K̄i) = 0 (3.17)

for all i, j = 1, r and s = 1, n− r, and similarly, from (3.16) it follows that on

U(M r
h),

h̄
(1)
j ( F̃m) = 0, h̃(1)

s (F̃m) = 0 (3.18)

for all j = 1, r and s, m = 1, n− r. Thus the theorem is proved.I

Having now defined global evolution parameters tj : M2n → R, j = 1, r,

of the corresponding vector fields K̄j = d/dtj , j = 1, r, and local evolution

parameters t̃s : M2n ∩ U(M r
h)→ R, s = 1, n− r, of the corresponding vector

fields F̃s

∣∣∣
U(Mr

h
)
:= d/dt̃s, s = 1, n− r, one can easily see from (3.18) that the

equalities

tj |U(Mr
h
) = t̄j , t̃s

∣∣
U(Mr

h
)

= t̃h,s (3.19)

hold for all j = 1, r, s = 1, n− r, up to constant normalizations. Thereby,

one can develop a new method, similar to that of Chapter 2, for studying the

integral submanifold imbedding problem in the case of the nonabelian Liouville-

Arnold integrability theorem.

Before starting, it is interesting to note that the system of invariants

Gτ := Gh ⊕ spanR{f̃s ∈ G/Gh : s = 1, n− r}

constructed above, comprise a new involutive (abelian) complete algebra Gτ ,

to which one can apply the abelian Liouville-Arnold theorem on integrability by
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quadratures and the integral submanifold imbedding theory devised in Chapter

2, in order to obtain exact solutions by means of algebraic-analytical expressions.

Namely, the following corollary holds.

Corollary 3.5. Assume that a nonabelian Lie algebra G satisfies the

Mishchenko-Fomenko condition (3.1) and M r
h ⊂M2n is its integral submanifold

(compact and connected) at a regular element h ∈ G∗, is diffeomorphic to the

standard torus Tr 'Mn
h,τ . Assume also that the dual complete abelian algebra

Gτ (dimGτ = n = 1/2 dimM2n) of independent invariants constructed above

is globally defined . Then its integral submanifold Mn
h,τ ⊂ M2n is diffeomorphic

to the standard torus Tn 'Mn
h,τ , and contains the torus Tr 'M r

h as a direct

product with some completely degenerate torus T
n−r, that is Mn

h,τ 'M r
h×T

n−r.

Thus, having successfully applied the algorithm of Chapter 2 to the algebraic-

analytical characterization of integral submanifolds of a nonabelian Liouville

-Arnold integrable Lie algebra G of invariants on the canonically symplectic

manifold M2n ' T ∗(Rn), one can produce a wide class of exact solutions rep-

resented by quadratures - which is just what we set out to find. At this point

it is necessary to note that up to now the (dual to G ) abelian complete algebra

Gτ of invariants at a regular h ∈ G ∗ was constructed only on some open neigh-

borhood U(M r
h) of the integral submanifold M r

h ⊂ M2n. As was mentioned

before, the global existence of the algebra Gτ strongly depends on the possibility

of extending these invariants to the entire manifold M2n. This possibility is in

1-1 correspondence with the existence of a global complex structure [24] on the

reduced integral submanifold M̃
2(n−r)
h,τ := Mk

h/Gh, induced by the reduced sym-

plectic structure π∗
τ ω(2) ∈ Λ2(Mk

h/Gh), where πτ : Mk
h →M2n is the imbed-

ding for the integrable differential system K(G) ⊂ Γ(M2n), introduced above.

If this is the case , the resulting complexified manifold CM̃n−r
h,τ ' M̃

2(n−r)
h,τ

will be endowed with a Kählerian structure, which makes it possible to produce

the dual abelian algebra Gτ as a globally defined set of invariants on M2n .

This problem will be analyzed in more detail in Chapter 5.

4 Examples
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4.1. Below we consider some examples of nonabelian Liouville-Arnold integra-

bility by quadratures covered by Theorem 1.5 .

Example 4.1. Point vortices in the plane.

Consider n ∈ Z+ point vortices on the plane R2, described by the Hamilto-

nian function

H = − 1

2π

n∑

i6=j=1

ξiξj ln ‖qi − pj‖ (4.20)

with respect to the following partially canonical symplectic structure on M2n '
T ∗(Rn) :

ω(2) =

n∑

j=1

ξjdpj ∧ dqj , (4.21)

where (pj , qj) ∈ R2, j = 1, n, are coordinates of the vortices in R2. There

exist three additional invariants

P1 =

n∑

j=1

ξjqj , P2 =

n∑

j=1

ξjpj , (4.22)

P =
1

2

n∑

j=1

ξj(q
2
j + p2

j),

satisfying the following Poisson bracket conditions:

{P1, P2} = −
n∑

j=1

ξj , {P1, P} = −P2 , {P2, P} = P1 ,

(4.23)

{P, H} = 0 = {Pj , H} .

It is evident, that invariants (4.1) and (4.3) comprise on
∑n

j=1 ξj = 0 a

four-dimensional Lie algebra G , whose rank G = 2. Indeed, assume a regular

vector h ∈ G∗ is chosen, and parametrized by real values hj ∈ R, j = 1, 4,

where
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h(Pi) = hi, h(P ) = h3 , h(H) = h4 , (4.24)

and i = 1, 2. Then , one can easily verify that the element

Qh = (
n∑

j=1

ξj)P −
n∑

i=1

hiPi (4.25)

belongs to the Cartan Lie subalgebra Gh ⊂ G, that is

h({Qh, Pi}) = 0, h({Qh, P}) = 0 . (4.26)

Since {Qh, H} = 0 for all values h ∈ G∗ , we claim that Gh = spanR{H, Qh}
- the Cartan subalgebra of G. Thus, rankG =dimGh = 2, and one comes right

away that the condition (3.1)

dim M2n = 2n = rankG+ dimG = 6 (4.27)

holds only if n = 3. Thereby, the following theorem is proved.

Theorem 4.1. The three - vortex problem (4.1) on the plane R2 is non-

abelian Liouville-Arnold integrable by quadratures on the phase space M6 '
T ∗(R3) with the symplectic structure (4.2).

As a result, the corresponding integral submanifold M2
h ⊂ M6 is two-

dimensional and diffeomorphic (when compact and connected) to the torus T2

' M2
h , on which the motions are quasiperiodic functions of the evolution pa-

rameter.

Concerning the Corollary 3.5 , the dynamical system (4.1) is also abelian

Liouville-Arnold integrable with an extended integral submanifold M3
h,τ ⊂M6

, which can be found via the scheme suggested in Chapter 3. Using simple

calculations, one obtains an additional invariant Q = (
∑3

j=1 ξj)P −
∑3

i=1 P 2
i /∈

G, which commutes with H and P of Gh . Therefore, there exists a new

complete dual abelian algebra Gτ = spanR {Q, P, H} of independent invariants
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on M6 with dimGτ = 3 = 1/2 dimM6, whose integral submanifold M3
h,τ ⊂

M6 (when compact and connected) is diffeomorphic to the torus T3 'M2
h×S1.

Note also here, that the above additional invariant Q ∈ Gτ can be nat-

urally extended to the case of an arbitrary number n ∈ Z+ of vortices as

follows: Q = (
∑n

j=1 ξj)P −
∑n

i=1 P 2
i ∈ Gτ , which obviously also commutes

with invariants (4.1) and (4.3) on the entire phase space M2n.

Example 4.2. A material point motion in a central field.

Consider the motion of a material point in the space R
3 under a central

potential field whose Hamiltonian

H =
1

2

3∑

j=1

p2
j + Q(‖q‖), (4.28)

contains a central field Q : R+ → R . The motion is takes place in the canonical

phase space M6 = T ∗(R3 ), and possesses three additional invariants:

P1 = p2q3 − pq, P2 = p3q1 − p1q3, P3 = p1q2 − p2q1 ,

(4.29)

satisfying the following Poisson bracket relations:

{P1, P2} = P3 , {P3, P1} = P2 , {P2, P3} = P1 . (4.30)

Since {H, Pj} = 0 for all j = 1, 3 , one sees that the problem under

consideration has a four-dimensional Lie algebra G of invariants, isomorphic

to the classical rotation Lie algebra so(3) × R ' G . Let us show that at

a regular element h ∈ G∗ the Cartan subalgebra Gh⊂ G has the dimension

dimGh = 2 = rankG . Indeed, one easily verifies that the invariant

Ph =
3∑

j=1

hjPj (4.31)

belongs to the Cartan subalgebra Gh , that is

{H, Ph} = 0, h({Ph, Pj}) = 0 (4.32)
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for all j = 1, 3. Thus, as the Cartan subalgebra Gh = spanR{H and Ph ⊂ G},
one gets dimGh = 2=rankGh, and the Mishchenko-Fomenko condition 3.1

dimM6 = 6 = rankG + dimG = 4 + 2 (4.33)

holds. Hence one can prove its integrability by quadratures via the nonabelian

Liouville Liouville-Arnold Theorem 1.5 and obtain the following theorem:

Theorem 4.3. It follows from Theorem 1.5 that the free material point

motion in R
3 is a completely integrable by quadratures dynamical system on

the canonical symplectic phase space M6 = T ∗(R3). The corresponding integral

submanifold M2
h ⊂M6 at a regular element h ∈ G∗ (if compact and connected)

is two-dimensional and diffeomorphic to the standard torus T2 'M2
h .

Making use of the integration algorithm devised in Chapters1 and 2, one can

readily obtain the corresponding integral submanifold imbedding mapping πh :

M2
h →M6 by means of algebraic-analytical expressions and transformations.

There are clearly many other interesting nonabelian Liouville-Arnold inte-

grable Hamiltonian systems on canonically symplectic phase spaces that arise in

applications, which can similarly be integrated using algebraic-analytical means.

We hope to study several of these systems in detail elsewhere.

5 Existence problem for a global set of invari-

ants

5.1 It was proved in Chapter 3, that locally, in some open neighborhood U(M r
h) ⊂

M2n of the integral submanifold M r
h ⊂ M2n one can find by algebraic-

analytical means just n−r ∈ Z+ independent vector fields F̃ j ∈ K(G)/K(Gh)∩

Γ(U(M r
h) , j = 1, n− r, satisfying the condition (3.3). Since each vector field

F̃j ∈ K(G)/K(Gh), j = 1, n− r, is generated by an invariant H̃j∈ D( U(M r
h))

, j = 1, n− r, it follows readily from (3.3) that

{H̃i, H̃j} = 0 (5.1)
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for all i, j = 1, n− r. Thus, on an open neighborhood U(M r
h) there ex-

ist just n − r invariants in addition to H̃j∈ D( U(M r
h)) , j = 1, n− r,

all of which are in involution. Denote as before this new set of invariants as

Gτ , keeping in mind that dimGτ = r + (n − r) = n ∈ Z+. Whence, on an

open neighborhood U(M r
h) ⊂ M2n we have constructed the set Gτ of just

n = 1/2 dimM2n invariants commuting with each other, thereby guarantee-

ing via the abelian Liouville-Arnold theorem its local complete integrability by

quadratures. Consequently, there exists locally a mapping πτ : Mk
h,τ →M2n,

where Mk
h,τ := U(M r

h) ∩Mk
τ is the integral submanifold of the differential sys-

tem K(G), and one can therefore describe the behavior of integrable vector

fields on the reduced manifold M̄
2(n−r)
h,τ := Mk−r

h,τ /Gh. For global integra-

bility properties of a given set G of invariants on (M2n, ω(2)), satisfying the

Mishchenko-Fomenko condition (3.1), it is necessary to have the additional set

of invariants H̃j∈ D( U(M r
h)), j = 1, n− r, extended from U(M r

h) to the

entire phase space M2n. This problem evidently depends on the existence of

extensions of vector fields F̃j ∈ Γ(U(M r
h)), j = 1, n− r, from the neighbor-

hood U(M r
h) ⊂M2n to the whole phase space M2n . On the other hand , as

stated before, the existence of such a continuation depends intimately on the

properties of the complexified differential system KC(G)/KC(Gh), which has a

nondegenerate complex metric ω(K̃C) : T (M̄
2(n−r)
h,τ )C × T (M̄

2(n−r)
h,τ )C → C,

induced by the symplectic structure ω(2) ∈ Λ2(M2n) . This point can be clar-

ified more by using the notion [24-27] of a Kähler manifold and some of the

associated constructions presented above. Namely, consider the local isomor-

phism T (M̄
2(n−r)
h,τ )C ' T (CM̄n−r

h,τ ), where CM̄n−r
h,τ is the complex (n − r)-

dimensional local integral submanifold of the complexified differential system

KC(G)/KC(Gh) . This means that the space T (M̄
2(n−r)
h,τ ) is endowed with the

standard almost complex structure

J : T (M̄
2(n−r)
h,τ )→ T (M̄

2(n−r)
h,τ ), J2 = −1, (5.2)

such that the 2-form ω(K̃) := Imω(K̃C) ∈ Λ2(M̄
2(n−r)
h,τ ) induced from the

above metric on T (CM̄n−r
h,τ ) is closed, that is dω(K̃) = 0. If this is the case, the

almost complex structure on the manifold T (M̄
2(n−r)
h,τ ) is said to be integrable.

Define the proper complex manifold CM̄n−r
h,τ , on which one can then define
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global vector fields F̃j ∈ K(G)/K(Gh), j = 1, n− r, which are being sought for

the involutive algebra Gτ of invariants on M2n to be integrable by quadratures

via the abelian Liouville-Arnold theorem. Thus the following theorem can be

obtained.

Theorem 5.1. A nonabelian set G of invariants on the symplectic

space M2n ' T ∗(Rn) , satisfying the Mishchenko-Fomenko condition 3.1, ad-

mits algebraic-analytical integration by quadratures for the integral submanifold

imbedding πh : M r
h → M2n, if the corresponding complexified reduced manifold

CM̄n−r
h,τ ' M̄

2(n−r)
h,τ = Mk−r

h,τ /Gh of the differential system KC(G)/KC(Gh) is

Kählerian with respect to the standard almost complex structure (5.1) and the

nondegenerate complex metric ω(K̃C) : T (M̄
2(n−r)
h,τ )C × T (M̄

2(n−r)
h,τ )C → C,

induced by the symplectic structure ω(2) ∈ Λ2(M2n) is integrable, that is

dImω(K̃C) = 0.

Theorem 5.1 shows, in particular, that nonabelian Liouville-Arnold integra-

bility by quadratures does not in general imply integrability via the abelian

Liouville-Arnold theorem; it actually depends on certain topological obstruc-

tions associated with the Lie algebra structure of invariants G on the phase

space M2n. We hope to explore this intriguing problem in another place.

6 Supplement.

Here we consider some examples of investigations of integral submanifold imbed-

ding mappings for abelian Liouville-Arnold integrable Hamiltonian systems on

T ∗(R2).

6.1.The Henon-Heiles system.

This flow is governed by the Hamiltonian

H1 =
1

2
p2
1 +

1

2
p2
2 + q1q

2
2 +

1

3
q3
1 (6.1)

on the canonically symplectic phase space M4 = T ∗(R2) with the symplectic

structure

ω(2) =
2∑

j=1

dpj ∧ dqj. (6.2)
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As is well known, there exists the following additional invariant that commutes

with (6.1):

H2 = p1p2 + 1/3q3
2 + q2

1q2, (6.3)

that is {H1, H2} = 0 on the entire space M4.

Take a regular element h ∈ G := {Hj : M4 → R: j = 1, 2}, with fixed

values h(Hj) = hj ∈ R, j = 1, 2. Then the integral submanifold

M2
h := {(q, p) ∈M4 : h(Hj) = hj ∈ R, j = 1, 2}, (6.4)

if compact and connected, is diffeomorphic to the standard torus T2 ' S1 ×
S1 owing to the Liouville-Arnold theorem, and one can find cyclic (separable)

coordinates µj ∈ S1, j = 1, 2, on the torus such that the symplectic structure

(6.2) will take the form:

ω(2) =

2∑

j=1

dwj ∧ dµj , (6.5)

where the conjugate variables wj ∈ T ∗(S1) , j = 1, 2, on M2
h depend only on

the corresponding variables µj ∈ S1
j , j = 1, 2. In this case it is evident that the

evolution along M2
h will be separable and representable by means of quasi-

periodic functions of the evolution parameters.

To show this, recall that the fundamental determining equations (2.34)

based on the 1-forms h̄
(1)
j ∈ Λ(M2

h), j = 1, 2, satisfy the identity

2∑

j=1

dHj ∧j h̄
(1)
j =

2∑

j=1

dpj ∧ dqj . (6.6)

Here

h̄
(1)
j =

2∑

k=1

h̄jk(q, p)dqk, (6.7)
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where j = 1, 2. Substituting (6.7) into (6.6), one obtains

h̄
(1)
1 =

p1dq1

p2
1 − p2

2

+
p2dq2

p2
1 − p2

2

, h̄
(1)
2 =

p2dq1

p2
21 − p2

1

+
p1dq2

p2
1 − p2

2

. (6.8)

On the other hand, the following implication holds on M2
h ⊂M4 :

α
(1)
h =

2∑

j=1

wj(µj ; h)dµj ⇒
2∑

j=1

pjdqj : = α(1), (6.9)

where we have assumed that the integral submanifold M2
h admits the local

coordinates in the base manifold R2 endowed with the canonical 1-form α
(1)
h ∈

Λ(M2
h) as given in (6.9). Thus, making use of the imbedding πh : M2

h →
T ∗(R2) in the form

qj = qj(µ; h) , pj = pj(µ; h) , (6.10)

j = 1, 2, one readily finds that the equalities

pj =

2∑

k=1

wk(µk; h) ∂µk/∂qj (6.11)

hold for j = 1, 2 on the entire integral submanifold M2
h.

Substituting (6.11) into (6.8) and using the characteristic relationships

(2.34), one obtains after simple but cumbersome calculations the following

differential-algebraic expressions:

∂q1/∂µ1 − ∂q2/∂µ1 = 0, ∂q1/∂µ2 + ∂q2/∂µ2 = 0, (6.12)

whose simplest solutions are

q1 = (µ1 + µ2)/2 , q2 = (µ1 − µ2)/2 . (6.13)

Using expressions (6.11) one finds that

p1 = w1 + w2 , p2 = w1 − w2 , (6.14)

where

w1 =
√

h1 + h2 − 4/3µ3
1, w2 =

√
h1 − h2 − 4/3µ3

2. (6.15)
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Consequently, one obtains the separable [15] Hamiltonian functions (6.1) and

(6.3) in a vicinity of the cotangent space T ∗(M2
h) :

h1 =
1

2
w2

1 +
1

2
w2

2 +
2

3
(µ3

1 + µ3
2), h2 =

1

2
w2

1 −
1

2
w2

2 +
2

3
(µ3

1 − µ3
2),

(6.16)

which generate the following separable motions on M2
h ⊂ T ∗(R2) :

dµ1/dt := ∂h1/∂w1 =
√

h1 + h2 − 4/3µ3
1, (6.17)

dµ2/dt := ∂h1/∂w2 =
√

h1 − h2 − 4/3µ3
2

for the Hamiltonian (6.1), and

dµ1/dx := ∂h2/∂w1 =
√

h1 + h2 − 4/3µ3
1, (6.18)

dµ2/dt := ∂h1/∂w2 = −
√

h1 − h2 − 4/3µ3
2

for the Hamiltonian (6.3), where x, t ∈ R are the corresponding evolution

parameters.

Analogously, one can show that there exists [28, 29] a similar to (6.13) and

(6.14) integral submanifold imbedding for the following integrable modified

Henon-Heiles involutive system:

H1 =
1

2
p2
1 +

1

2
p2
2 + q1q

2
2 +

16

3
q3
1 , (6.19)

H2 = 9p4
2 + 36q1p

2
2q

2
2 − 12p1p2q

3
2 − 2q4

2(q
2
2 + 6q2

1) ,

where {H1, H1} = 0 on the entire phase space M4 = T ∗(R2).

Based on considerations similar to the above, one can deduce the following

[29] expressions:

q1 = −1

4
(µ1 + µ2)−

3

8
(
w1 + w2

µ1 − µ2
)2, (6.20)

q2
2 = −2

√
h2/(µ1 − µ2), w1 =

√
2/3µ3

1 − 4/3
√

h2 − 8h1 ,

p1 =
1

2
√
−6(µ1 + µ2 + 4q1)

[
−2
√

h2

µ1 − µ2
− µ1µ2 + 4(µ1 + µ2)q1 + 32q2

1],

p2 =
√

h2(µ1+µ2 + 4q1)/(3(µ1−µ2)) , w2 =

√
2/3µ3

2 + 4/3
√

h2 − 8h1 ,

42



thereby solving explicitly the problem of finding the corresponding integral sub-

manifold imbedding πh : M2
h → T ∗(R2) that generates separable flows in the

variables (µ , w) ∈ T ∗(M2
h).

6.2. A truncated four-dimensional Focker-Plank Hamiltonian sys-

tem on T ∗(R2) and its integrability by quadratures.

Consider the following dynamical system on the canonically symplectic phase

space T ∗(R2) :

dq1/dt = p1 + α(q1 + p2)(q2 + p1), dq2/dt = p2,

dp1/dt = −(q1 + p2)− α[q2p1 + 1/2(p2
1 + p2

2 + q2
2)],

dp2/dt = −(q2 + p1),





= K1(q, p),

(6.21)

where K1 : T ∗(R2)→ T (T ∗(R2)) is the corresponding vector field on T ∗(R2) 3
(q, p), t ∈ R is an evolution parameter, called a truncated four-dimensional

Focker-Plank flow. It is easy to verify that functions Hj : T ∗(R2)→ R, j = 1, 2,

where

H1 = 1/2(p2
1 + p2

2 + q2
1) + q1p2 + α(q1 + p2)[q2p1 + 1/2(p2

1 + p2
2 + q2

2)]

(6.22)

and

H2 = 1/2(p2
1 + p2

2 + q2
2) + q2p1 (6.23)

are functionally independent invariants with respect to the flow (6.21). More-

over, the invariant (6.22) is the Hamiltonian function for (6.21), that is the

relationship

iK1ω
(2) = −dH1 (6.24)

holds on T ∗(R2), where the symplectic structure ω(2) ∈ Λ2(T ∗(R2)) is given

as follows:

ω(2) := d(pr∗α(1)) =

2∑

j=1

dpj ∧ dqj , (6.25)

with α(1) ∈ Λ1(R2) to be the canonical Liouville form on R2 :

α(1)(q; p) =

2∑

j=1

pjdqj (6.26)
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for any (q, p) ∈ T ∗(R2) ' Λ1(R2).

The invariants (6.22) and (6.23) commute evidently with each other subject

to the associated Poisson bracket on T ∗(R2) :

{H1, H2} = 0. (6.27)

Thereby, owing to the abelian Liouville-Arnold theorem [1, 2] the dynamical

system (6.21) is completely integrable by quadratures on T ∗(R2), and we can

apply the scheme devised in chapter 2 to the commuting invariants (6.22) and

(6.23) subject to the symplectic structure (6.25). One easily calculates that

ω(2) =

2∑

i=1

dHi ∧ h
(1)
i , (6.28)

where the corresponding 1-forms π∗
hh

(1)
i := h̄

(1)
i ∈ Λ1(M2

h), i = 1, 2, are given

as

h̄
(1)
1 = p2dq1−(p1+q2)dq2

p1p2−(p1+q2)(q1+p2)−αh2(p1+q2) ,

h̄
(1)
2 = −[(q1+p2)(1+αp2)+αh2]dq1+(p1+α[h2+(q2+p1)( q1+p2)])dq2

p1p2−(q2+p1)(αh2+ q1+p2) , (6.29)

and an invariant submanifold M2
h ⊂ T ∗(R2) is defined as

M2
h := {(q, p) ∈ T ∗(R2) : Hi(q, p) = hi ∈ R,i = 1, 2} (6.30)

for some parameters h ∈ R2 and Based now on expressions (6.30), and (2.38)

one can easily construct functions P̄ij(w; h), i, j = 1, 2, in (2.53), defined on

T ∗(M2
h) ' T ∗(⊗2

j=1S1
j ) subject to the integral submanifold imbedding map-

ping πh : M2
h → T ∗(R2) in coordinates µ ∈ ⊗2

j=1S1
j ⊂ ⊗2

j=1Γ
(j)
h , which

we don’t write down in detail due to their a bit long and cumbersome form.

Having applied then the criterion (2.55), we arrive at the following compati-

bility relationships subject to the mappings q : (⊗2
j=1S1

j) × R2 → R2 and
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p : (⊗2
j=1S1

j)× R2 → T ∗
q (R2) :

∂q1/∂µ1 − ∂q2/∂µ2 = 0, w1∂Lµ/∂w1 − w2∂Lµ/∂w2 = 0,

∂2q1/∂µ2∂h2 + ∂2w2/∂µ2∂h2 = 0,

∂w1/∂h1(∂q1/∂h1) = ∂w2/∂h1(∂q2/∂h1),

w1∂w1/∂h1 − w2∂w2/∂h2 = 0,

∂(w1∂w1/∂h2)/∂h2 − α2∂q1/∂µ1 = 0, ...

(6.31)

and so on,subject to variables µ ∈ ⊗2
j=1S1

j and h ∈ R2. Solving equations like

(6.31) , one can find right away that the expressions

p1 = w1, p2 = w2,

q1 = c1 + µ1 − w2(µ2; h),

q2 = c2 + µ2 − w1(µ1; h),

Lµ(h) = −w1w2,

(6.32)

where cj(h1, h2) ∈ R
1, j = 1, 2, are constant, hold on T ∗(M2

h), giving rise to

the following Picard- Fuchs type equations in the form (2.56):

∂w1(µ1; h)/∂h1 = 1/w1,

∂w1(µ1; h)/∂h2 = α2h2/w1,

∂w2(µ2; h)/∂h1 = 0

∂w2(µ2; h)/∂h2 = 1/w2.

(6.33)

The Picard-Fuchs equations (6.33) can be easily integrated by quadratures as

follows:

w2
1 + k1(µ1)− α2h2 − 2h1 = 0,

w2
2 + k2(µ2)− 2h2 = 0,

(6.34)

where kj : S1
j → C, j = 1, 2, are still unknown functions. For them to

be determined explicitly, it is necessarily to substitute (6.32) into expressions

(6.22) and (6.23), making use of (6.34) that amounts to the following results:

k1 = µ2
1, k2 = µ2

2 (6.35)
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under the condition that c1 = −αh2, c2 = 0. Thereby, we have constructed

owing to (6.34) the corresponding algebraic curves Γ
(j)
h , j = 1.2, (2.41) in the

explicit form:

Γ
(1)
h := {(λ, w1) : w2

1 + λ2 − α2h2
2 − 2h1) = 0},

Γ
(2)
h := {(λ, w2) : w2

2 + λ2 − 2h2 = 0},
(6.36)

where (λ, wj) ∈ C× C , j = 1, 2, and h ∈ R2 are arbitrary parameters.

Making use now expressions (6.37) and (6.32), one can construct in explicit

form the integral submanifold imbedding mapping πh : M2
h → T ∗(R2) for the

flow (6.21):

q1 = µ1 −
√

2h2 − µ2
2 − αh2

2, p1 = w1(µ1; h),

q2 = µ2 −
√

2h1 − α2h2
2 − µ2

1, p2 = w2(µ2; h),

(6.37)

where (µ, w) ∈ ⊗2
j=1Γ

(j)
h . As was mentioned before in chapter 2, formulas (6.37)

together with explicit expressions (2.40) make it possible right away to find

solutions to the truncated Focker-Plank flow (6.21) by quadratures, thereby

completing its integrability.
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