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ABSTRACT. We develop a symplectic theory approach to partial solving the problem
of algebraic-analytical construction of integral submanifold imbeddings for integrable via the
abelian and nonabelian Liouville-Arnold theorems Hamiltonian systems on canonically sym-

plectic phase spaces. The fundamental role of so called Picard-Fuchs type equations is revealed

and their differential-geometric and algebraic properties are studied in detail. Some interest-
ing examples of integrable Hamiltonian systems demonstrating the algorithm of investigating
the integral submanifolds imbedding mapping are studied in deatil.

0. Introduction.

0.1. As is well known [1,4], the integrability by quadratures of a differ-
ential equation in space R™ is a method of seeking its solutions by means of
finite number of algebraic operations (together with inversion of functions) and
”quadratures”- calculations of integrals of known functions.

Assume that our differential equation is given as a Hamiltonian dynamical
system on some appropriate symplectic manifold (M 2",w(2)), n € Z4, in the

form
du/dt = {H,u}, (0.1)

where u € M?", H : M?*" —R is a sufficiently smooth Hamiltonian function
[1,4] with respect to the Poisson bracket {-,-} on D(M?"), dual to the symplectic
structure w® € A2(M?"), and t €R is the evolution parameter.

More than one hundred and fifty years ago French mathematicians and
physicists, first E. Bour and next J. Liouville, proved the first ”integrability
by quadratures” theorem which in modern terms [33] can be formulated as fol-
lows.

Theorem 0.1. Let M>?" ~ T*(R") be a canonically symplectic phase space
and there be given a dynamical system(0.1) with a Hamiltonian function H:
M?"xR; —R , possessing a Poissonian Lie algebra G of n€ Z, invariants
Hj : M*"xR; —R, j=1,n, such that

{Hi,H;} => ¢ H,, (0.2)
s=1



and for all i,j,k =T,n the c; €ER are constants on M**xR;. Suppose further
that

M == {(u,t) € M x Ry : h(H;) = h;, j=1,n, he G},
(0.3)

the integral submanifold of the set G of invariants at a reqular element he G*,
1s a well defined connected submanifold of M xR;. Then, if :

i) all functions of G are functionally independent on M,?H;

W) Y on_y cijhs =0 for alli,j =1,n;

iii) the Lie algebra G = spang {H; : M*"xR; —R: j=1,n} is solvable,
the Hamiltonian system (0.1) on M?" is integrable by quadratures.

As a simple corollary of the Bour-Liouville theorem one gets the following:

Corollary 0.2. If a Hamiltonian system on M?" =T*(R") possesses just
n€ Zy functionally independent invariants in involution, that is a Lie algebra
G is abelian, then it is integrable by quadratures.

In the autonomous case when a Hamiltonian H = H;, and invariants H;
:M? — R, j =1,n, are independent of the evolution parameter ¢ €R, the
involutivity condition {H;, H;} =0, i,j = 1,n, can be replaced by the weaker
one {H,H;} = ¢;H for some constants ¢; € R, j = 1,n.

The first proof of Theorem 0.1. was based on a result of S. Lie, which can
be formulated as follows.

Theorem 0.3 (S. Lie) Let vector fields K; € T(M?"), j = 1,n, be inde-
pendent in some open neighborhood Uy, € M?", generate a solvable Lie algebra
G with respect to the usual commutator [-,-] on I'(M*") and [K;, K| =c¢;K
for all j =1,n, wherec; €R, j =1,n, are constants. Then the dynamical

system

du/dt = K(u), (0.17)

where u €Uy, C M?™, is integrable by quadratures.
Example 0.4 Motion of three particles on line R under uniform potential
field.



The motion of three particles on the axis R pairwise interacting via a uni-
form potential field Q(||-]|) is described as a Hamiltonian system on the canon-
ically symplectic phase space M = T*(R?) with the following Lie algebra G of

invariants on M?2":

H=H = ij/ZmﬁLZ (Ilg: = 511, (0.4)

1<j=1
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where (¢j,pj) € T*(R), j = 1,3, are coordinates and momenta of particles on

the axis R. The commutation relations for the Lie algebra G are

{H\,H3} =0, {Hy,Hs} = Hy, {H,Hy}=2H], (0.5)

hence it clearly solvable. Taking a regular element h € G*, such that h(H;) =
hj =0, for j =1 and 3, and h(H2) = hs € R being arbitrary, one obtains the
integrability of the problem above in quadratures.

0.2. In 1974 V. Arnold proved [4] the following important result known as
the commutative (abelian) Liouville-Arnold theorem.

Theorem 0.5 (J.Liouville-V. Arnold). Suppose a set G of functions Hj :
M2 - R, j=1,n, on a symplectic manifold M?™ is abelian, that is

{H;,H;} =0 (0.6)

for alli,j = 1,n. If on the compact and connected integral submanifold My ={ueM>":
h(H;)=h; € R, j=1,n, he G*} with he G being regular, all functzons H :
M?*" €R, j =1,n, are functionally independent, then M} is diffeomorphic
to the n-dimensional torus T ~ M?", and the motion on it with respect to the
Hamiltonian H=H, € G is a quasi-periodic function of the evolution parameter
te R.

A dynamical system satisfying the hypotheses of Theorem 0.5 is called com-
pletely integrable.



In 1978 Mishchenko and Fomenko [2] proved the following generalization of
the Liouville-Arnold theorem 0.5:

Theorem 0.6. (A. Mishchenko-A. Fomenko) Assume that on a symplec-
tic manifold (M?",w®) ) there is a nonabelian Lie algebra G of invariants Hj -
M €R, j=1,k, with respect to the dual Poisson bracket on M?", that is

k
{Hi,H;} =Y ¢;H,, (0.7)
s=1

where all values ¢;; € R, i,j,s =1, k, are constants, and the following conditions
are satisfied:

i) the integral submanifold My :={ueM*":h(H;)=h € G*} is compact and
connected at a regular element h € G*;

it) all functions H; M — R, j=1,k, are functionally independent on M?";

iii)the Lie algebra G of invariants satisfies the following relationship:

dim G + rankG = dim M>", (0.8)

where rankG = dim Gy is the dimension of a Cartan subalgebra G, C G.
Then the submanifold M} C M?" is r = rankG -dimensional, invariant with
respect each vector field K€ T'(M?*") , generated by an element H € Gy, and
diffeomorphic to the r-dimensional torus T ~ M}, on which the motion is a
quasiperiodic function of the evolution parameter t € R.

0.3. The simplest proof of the Mishchenko -Fomenko Theorem 0.6 can be
obtained from the well known [3,16] classical Lie-Cartan theorem.

Theorem 0.7 (S. Lie-E. Cartan) Spose that a point he G* for a given Lie
algebra G of invariants H; M2 =R, j=1,k, is not critical, and the rank
|[{H;, H;} : i,j = 1,k|| = 2(n — r) is constant in an open neighborhood Uy,
ER™ of the point {h(H;) = h; €R: j = 1,k}C R*. Then in the neighborhood
(ho H)™' :U, C M?" there exist k€ Z, independent functions fs:G —R,
s =1,k, such that the functions F,:= (fsoH): M?" € R, s=1k, satisfy

the following relationships:

{Fl,FQ} = {F3,F4} — ... = {FQ(n—r)—laFQ(n—r)} = 17 (09)



with all other brackets {F;, F;} = 0, where (i,j) # (2s — 1,2s), s=1,n—r.
In particular, (k+r —n) € Zy functions F; : M** —R, j =1,n—r, and
F, : M SR, s = m, compose an abelian algebra G, of new
invariants on M*", independent on (ho H)~*(Uy) C M.

As a simple corollary of the Lie-Cartan Theorem 0.7 one obtains the follow-
ing : in the case of the Mishchenko-Fomenko theorem when rankG + dimG =
dimM?>", that is r + k = 2n, the abelian algebra G, (it is not a subalgebra of
G !) of invariants on M?" is just n = 1/2dimM?"-dimensional, giving rise to its
local complete integrability in (h o H)~1(Uy) C M2 via the abelian Liouville-
Arnold theorem 0.5. It is also evident that the Mishchenko-Fomenko non-
abelian integrability theorem 0.6 reduces to the commutative (abelian) Liouville-
Arnold case when a Lie algebra G of invariants is just abelian, since then
rankG = dimG = 1/2dim M =n € Z, - the standard complete integra-
bility condition.

All the cases of integrability by quadratures described above pose the fol-
lowing fundamental question: How can one effectively construct by means of

algebraic-analytical methods the corresponding integral submanifold imbedding
T 2 M — M, (0.10)

where r = dim rankG, thereby making it possible to express the solutions of
an integrable flow on M as some exact quasi-periodic functions on the torus
T" ~ M;.

Below we shall describe an algebraic-analytical algorithm for resolving this
question for the case when a symplectic manifold M 2" is diffeomorphic to the

canonically symplectic cotangent phase space T*(R) ~ M?™.

1  General setting.

1.1. Our main object of study will be differential systems of vector fields on
the cotangent phase space M2" = T*(R"), n € Z, endowed with the canonical
symplectic structure w® € A2(M?"), where by w® = d(pr*a?), and



oM =< p,dg >= ijdqj, (1.1)
j=1

is the canonical 1-form on the base space R", lifted naturally to the space
AY(M?™), (q,p) € M*" are canonical coordinates on T*(R™), pr : T*(R") — R
is the canonical projection , and < -,- > is the usual scalar product in R".
Assume further that there is also given a Lie subgroup G (not necessarily
compact), acting symplectically via the mapping ¢ : G x M?" — M?" on M*",
generating a Lie algebra homomorphism ¢, : T(G) —I'(M?") via the diagram

GxG ~ TG Y T
! ! (1.2)

where u € M?". Thus, for any a €G one can define a vector field K, € I'(M?")
as follows:

K, =« a. (1.3)
Since the manifold M?" is symplectic, one can naturally define for any a € G
a function H, € D(M?") as follows:

—ig,w? = dH,, (1.4)

whose existence follows from the invariance property

Lg,w® =0 (1.5)
for all a € G. The following lemma [1] is useful in applications.

Lemma 1.1. If the first homology group H1(G;R) of the Lie algebra G
vanishes, then the mapping ® : G — D(M?>") defined as

O(a) = H, (1.6)



for any a € G, is a Lie algebra homomorphism of G and D(M?*") (endowed
with the Lie structure induced by the symplectic structure w® € A2(M?")). In
this case G is said to be Poissonian.

As the mapping ® : G — D(M?") is evidently linear in G, the expression
(1.6) naturally defines a momentum mapping [ : M?" — G* as follows: for any
we€M?andall a €@

(l(u),a)g := Ha(u), (1.7)

where (-, -)g is the standard scalar product on the dual pair G* x G. The following
characteristic equivariance [1] lemma holds.

Lemma 1.2. The diagram

M2n _l> g*

09 lAd;_l (1.8)
M2 4 G
commutes for all g € G, where Aal;,1 : G¥ — G* is the corresponding
co-adjoint action of the Lie group G on the dual space G*.

Take now any vector h € G* and consider a subspace G, C G , consisting of
elements a € G, such that ad’h = 0, where ad} : G* — G*is the corresponding
Lie algebra G representation in the dual space G*.

The following lemmas hold.

Lemma 1.3.The subspace G, C G is a Lie subalgebra of G, called here a
Cartan subalgebra.

Lemma 1.4. Assume a vector h € G* is chosen in such a way that r =
dimg@y, is minimal. Then the Cartan Lie subalgebra G, C G is abelian.

In Lemmal.4 the corresponding element & € G* is called regular and the
number r = dim Gy, is called the rankG of the Lie algebra G.

1.2. Some twenty years ago Mishchenko and Fomenko [2] proved the fol-
lowing important noncommutative (nonabelian) Liouville-Arnold theorem.

Theorem 1.5. On a symplectic space (MQ",w(Q)) let there be given a
set of smooth functions H; € D(M?™), j = 1,k, whose linear span over R

comprises a Lie algebra G with respect to the corresponding Poisson bracket on



M?". Suppose also that the set
MR = {ue M*" :h(H;)=h; €R, j=1,k, hecG*}

with h € G* regular, is a submanifold of M?", and on Mg"ik all the functions
H; € D(M*"), j = 1, k, are functionally independent. Assume also that the
Lie algebra G satisfies the following condition:

dim G+rankG = dim M?". (1.9)

Then the submanifold M := M,f”*k is rankG = r—dimensional and invariant
with respect to each vector field Kz € T'(M?") with @ € G, C G .Given a
vector field K = Kg € T(M?") with @ € G, or K € I'(M*") such that
[K,K,) =0 forall a€G, then, if the submanifold M] is connected and
compact, it is diffeomorphic to the r—dimensional torus T" ~ M;  and the
motion of the vector field K € T'(M?™) on it is a quasiperiodic function of the
evolution parameter t € R.

The easiest proof of this result can be obtained from the well known [3]
classical Lie -Cartan theorem, mentioned in the Introduction. Below we shall
only sketch the original Mishchenko-Fomenko proof which is heavily based on
symplectic theory techniques, some of which have been discussed above.

«Sketch of the proof. Define a Lie group G naturally as G = exp G, where
G is the Lie algebra of functions H; € D(M?"), j = 1,k, in the theorem , with
respect to the Poisson bracket {-,-} on M?". Then for an element h € G* and
any a = Z?Zl c¢jH; € G ,wherec; €R, j= 1, k, the following equality

k k
(h,a)g = ¢;h(H;) = cjh; (1.10)
j=1 Jj=1

holds. Since all functions H; € D(M?*"), j = 1, k, are independent on the
level submanifold M; C M 2 this evidently means that the element h € G* is
regular for the Lie algebra G. Consequently, the Cartan Lie subalgebra G, C G
is abelian. The latter is proved by means of simple straightforward calculations.
Moreover, the corresponding momentum mapping [ : M?" — G* is constant

on M; and satisfies the following relation:

I(M])=heg*. (1.11)



From this it can be shown that all vector fields Kz € I'(M?"), @ € G,
are tangent to the submanifold M) C M?". Thus the corresponding Lie
subgroup Gy, := exp @, acts naturally and invariantly on Mj. If the sub-
manifold M] C M?" is connected and compact, it follows from (1.10) that
dim M] = dim M?" — dim G = rankG =r, and one obtains via the Arnold the-
orem [4] , that M] ~ T” and the motion of the vector field K € I'(M?") is
a quasiperiodic function of the evolution parameter t € R, thus proving the
theorem. »

As a nontrivial consequence of the Lie-Cartan theorem mentioned before and
of the Theorem 1.5, one can prove the following dual theorem about abelian
Liouville-Arnold integrability.

Theorem 1.6. Let a vector field K € T'(M?") be completely integrable
via the nonabelian scheme of Theorem 1.5. Then it is also Liouville-Arnold
integrable on M?" and possesses, under some additional conditions, yet another
abelian Lie algebra Gn of functionally independent invariants on M?", for
which dim G, = n = 1/2dim M?".

The available proof of the theorem above is quite complicated, and we shall
comment on it in detail later on. We mention here only that some analogs of
the reduction Theorem 1.5 for the case where M?" ~ G*, so that an arbitrary
Lie group G acts symplectically on the manifold, were proved also in [6-10,
34]. Notice here, that in case when the equality (1.10) is not satisfied , one can
then construct in the usual way the reduced manifold Hinikir =M E"’k /Gh

. . . _ “F2n—k—
on which there exists a symplectic structure wgf) € A2(M in "), defined as

riw?) = riw® (1.12)

with respect to the following compatible reduction-imbedding diagram:

—2n—k—r _
M, S MR T (1.13)
_ —2n—k—r _ .
where 7, : M™% — I, and 7, : M™% — M?" are, respectively, the

corresponding reductions and imbedding mappings. The nondegeneracy of the

2-form Gf) € A2(M},) defined by (1.13), follows simply from the expression

ker(mjw® (v)) = T (M ¥y nTH(MF) = (1.14)



—2n—k—r

spang{Kz(u) € T, (M}, = M2"%/G) 1T € Gr}

for any u € M}QL"_k7 since all vector fields Kz € I'(M?"), @ € Gy, are tangent
to Min_k_r := M™% /G),. Thus, the reduced space Wzn_k_r = MM */q),
with respect to the orbits of the Lie subgroup G action on M 2”*’“ will be
a (2n — k — r)-dimensional symplectic manifold. The latter evidently means
that the number 2n — k —r = 2s € Z; is even as there is no symplectic
structure on odd-dimensional manifolds. This obviously is closely connected
with the problem of existence of a symplectic group action of a Lie group G
on a given symplectic manifold (M?",w®)) with a symplectic structure w® €
AP (M?") being a'priori fixed. From this point of view one can consider
the inverse problem of constructing symplectic structures on a manifold M?2"
, admitting a Lie group G action. Namely, owing to the equivariance property
(1.8) of the momentum mapping [ : M?" — G*, one can obtain the induced
symplectic structure l*QELZ) € Az(ﬁinikir) on Minikir from the canonical
symplectic structure Qf) € A®(Or(h;G)) on  the orbit Or(h;G) C G* of a
regular element h € G*. Since the symplectic structure Z*Qf) € A%(My) can
be naturally lifted to the 2-form @@ = (rf o 1)Q?) € A2(M2"%), the latter
being degenerate on M }%"_k can apparently be nonuniquely extended on the
whole manifold M?" to a symplectic structure w® € A2(M?"), for which the
action of the Lie group G is a'priori symplectic. Thus, many properties of a
given dynamical system with a Lie algebra G of invariants on M?2" are deeply
connected with the symplectic structure w® € A%(M?") the manifold M?" is
endowed with, and in particular, with the corresponding integral submanifold
imbedding mapping m, : Mg"ik — M?" at a regular element h € G*. The
problem of direct algebraic-analytical construction of this mapping was in part
solved in [11] in the case where n = 2 for an abelian algebra G on the manifold
M* = T*(R?). The treatment of this problem in [11] has been extensively

based both on the classical Cartan studies of integral submanifolds of ideals
in Grassmann algebras and on the modern Galisot-Reeb-Francoise results for a
symplectic manifold (M?" w(®)) structure, on which there exists an involutive
set G of functionally independent invariants H; € D(M?"), j = I,n. In
what follows below we generalize the Galisot-Reeb-Francoise results to the

case of a nonabelian set of functionally independent functions H; € D(M?"),

10



j=1,k, comprising a Lie algebra G and satisfying the Mishchenko-Fomenko
condition (1.10): dim G+rankG =dim M?". This makes it possible to devise an
effective algebraic-analytical method of constructing the corresponding integral
submanifold imbedding and reduction mappings, giving rise to a wide class of
exact, integrable by quadratures solutions of a given integrable vector field on
M2,

2 Integral submanifold imbedding problem for

an abelian Lie algebra of invariants

2.1. We shall consider here only a set G of commuting polynomial functions
H; € D(M*"), j =1,n, on the canonically symplectic phase space M?" =
T*(R™). Due to the Liouville -Arnold theorem [4], any dynamical system K €

[(M?") commuting with corresponding Hamiltonian vector fields K, for all a €
G, will be integrable by quadratures in case of a regular element h € G*, which

defines the corresponding integral submanifold M} := {u € M>" : h(H;) =

h; € R, j =1,n} which is diffeomorphic (when compact and connected) to the
n—dimensional torus T™ ~ M;'. This in particular means that there exists some
algebraic-analytical expression for the integral submanifold imbedding mapping
T M} — M 2" into the ambient phase space M?2", which one should find
in order to properly demonstrate integrability by quadratures.

The problem formulated above was posed and in part solved (as was men-
tioned above) for n = 2 in [11] and in [13] for a Henon-Heiles dynamical
system which had previously been integrated [14,15] using other tools. Here we
generalize the approach of [11] for the general case n € Z; and proceed further
in Chapter 3 to solve this problem in the case of a nonabelian Lie algebra G
of polynomial invariants on ~M?" = T*(R"), satisfying all the conditions of
Mishchenko-Fomenko Theorem 1.5.

2.2. Define now the basic vector fields K; € I'(M?"), j = 1, n, generated by

basic elements H; € G of an abelian Lie algebra G of invariants on ~ M?", as

11



follows:
—ig,w? = dH; (2.1)

for all j = 1,n. It is easy to see that the condition {H;, H;} = 0 for all
i,j = 1,n, yields also [K;, Kj] = 0 for all i,j = 1,n. Taking into account
that dim M?" = 2n  one obtains the equality (w(®)” = 0 identically on

M?". This makes it possible to formulate the following Galisau-Reeb result.

Theorem 2.1. Assume that an element h € G* is chosen to be regular and
a Lie algebra G of invariants on M?" is abelian. Then there exist differential
1-forms h;l) e ALY (U(M)), j =1,n, where U(M}) is some open neighborhood

of the integral submanifold M} C M?", satisfying the following properties:

: _\n (1),

) ""(2)|U(M;;) =2 jm1 AH; Nhys

ii) the exterior differentials dhg»l) € A2(U(M]")) belong to the ideal Z(G)
in the Grassmann algebra A(U(M]')), generated by 1-forms dH; e AY(U(M]Y)),

j=1n.
<«Proof. Consider the following identity on M?" :

(@7_yik, ) (W) = 0= E(n+ DA dH;) A w@), (2.2)

which implies that the 2-form  w® € Z(G) . Whence, one can find 1-forms
h;l) eAYU(M})), j =T1,n, satisfying the condition

<2>} —N"aH A BWY 2.3
w . .
U(M;;) J:Zl J J ( )

Since w? € A%2(U(M})) is nondegenerate on M?", it follows that all 1-forms
K

j
theorem. As dw® =0 on M?", from (2.3) one gets that

, j = 1,n,in (2.3) are independent on U(M}'), proving part i) of the

S dH; ndhY =0 (2.4)
j=1

12



on U(M}), hence it is obvious that dh\" € Z(G) ¢ A(U(M})) for all j =T n,
proving part i) of the theorem.»

Now we proceed to study properties of the integral submanifold M; C M 2n
of the ideal Z(G) in the Grassmann algebra A(U(M}')). In general, the integral
submanifold M}’ is completely described [16] by means of the imbedding

T s MY — M (2.5)

and using this, one can reduce all vector fields K; € I'(M?"), j = I,n,
on the submanifold M]* C M?", since they are all evidently in its tangent
space. If Fj € I'(M}), j = 1,n, are the corresponding pulled-back vector
fields K; € I'(M?"), j = 1,n, then by definition, the equality

Wh*ofj:Kjowh (26)

holds for all j =1,n. Similarly one can construct 1-forms E;l) =T} o h;l) €
AY (M), j = 1,n, which are characterized by the following Cartan-Jost [16]
theorem.

Theorem 2.2. The following assertions are true:

i) the 1-forms E;l) e AY(M}), j=1,n, are independent on M];

ii) the I1-forms E;l) € A (M), j = T,n, are exact on M} and satisfy
(&) = 6y, 05 = Tom.

<Proof. As the ideal Z(G) is by definition vanishing on M C M?*"
and closed on U(M]') , the integral submanifold M;* is well defined in the
case of a regular element h € G*. This implies that the imbedding (2.5) is
nondegenerate on M} C M?", or the 1-forms ﬁgl) =T} 0 h;

persist in being independent if they are 1-forms h;l) e AN UMY, 7 =1,n,

D i =T,n, wil

proving part i) of the theorem. Using property ii) of Theorem 2.1, one sees
that on the integral submanifold M}* C M?" all 2-forms dﬁgl) =0,j=1,n.
- dt; €
AN (M), j = 1,n, for some mappings %; : M}’ — R, j =1,n, defining global

Consequently, owing to the Poincaré lemma [1,16], the 1-forms Eg-l

coordinates on an appropriate universal covering of M;]'. Consider now the

following identity based on the representation (2.3):

ix, w(z)’

=S YK, dH, .= —dH;, 2.7
U(M;;) ; ) ( J) J ( )
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which holds for any j =T1,n. Asall dH; € AY(U(M}")), j =1,n, are indepen-
dent, from (2.7) one infers that hgl)(Kj) =¢;; forall i,j=1,n. Recalling
now that for any i=1,n, K;om, = mhw o K;, one readily computes
that B (K;) = mihiD(E;) == B (e 0 K;) i= WV (K 0 mp) = 655 for all

i,j = 1,n, proving part ii) of the theorem.»

The following is a simple consequence of Theorem 2.2:

Corollary 2.3. Suppose that the vector fields K; € T(M?"), j = 1,n,
are parametrized globally along their trajectories by means of the corresponding

parameters t; : M*™" — R, j=T1,n, that is on the phase space M>"

d/dtj = Kj (28)

for all  j =1,n. Then the following important equalities hold (up to constant

normalizations) on the integral submanifold M C M?":

tj|Ml: =1, (2.9)
where 1<j <n.

2.3.  We consider a completely integrable via Liouville-Arnold Hamilto-
nian system on the cotangent canonically symplectic manifold (7*(R"),w®),
n € Z,, possessing exactly n € Z, functionally independent and Poisson
commuting algebraic polynomial invariants H; : T*(R™) — R, j = I,n. Due
to the Liouville-Arnold theorem this Hamiltonian system can be completely in-
tegrated by quadratures in quasi-periodic functions on its integral submanifold
when taken compact. It is equivalent to the statement that this compact in-
tegral submanifold is diffeomorphic to a torus T", that makes it possible to
formulate the problem of integrating the system by means of searching the cor-
responding integral submanifold imbedding mapping =, : M} — T*(R"),
where by definition

M} = {(¢.p) € T"(R") : Hj(q,p) = h; €R, j=T.n}.
(2.10)

Since M} ~ T™, and the integral submanifold (2.10) is invariant subject to all
Hamiltonian flows K; : T*(R") — T(T*(R™)), j =1,n, where

ix,w® = —dH; (2.11)
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there exist corresponding ”action-angle” - coordinates (p,7) € (T7,R™) on the
torus T2 = M}, specifying its imbedding , : T — T*(R") by means of a
set of smooth functions v € D(R™), where

T :={(¢,p) € T"(R") : ~;(H)=1; €R, j=Tn}. (2.12)

The induced by (2.12) mapping ~ : R™ > h — R™ is of great interest for many
applications and was studied still earlier by Picard and Fuchs subject to the

corresponding differential equations it satisfies:
0vj(h)/0hi = Fij(v; h), (2.13)

where h € R® and Fj; : R x R® — R, i,j = 1,n, are some smooth
almost everywhere functions. In the case when the right hand side of (2.13)
is a set of algebraic functions on C™x C™ > (v;h), all Hamiltonian flows
K; : T*(R™) — T(T*(R")), j = 1,n, are said to be algebraically completely in-
tegrable in quadratures. In general equations like (2.13) were studied in [19,31],
a recent example one can find in [18]. It is clear enough that Picard-Fuchs
equations (2.13) are related with the associated canonical transformation of
the symplectic 2-form w® € A?(T*(R")) in a neighborhood U(M}*)  of
the integral submanifold M} C T*(R™). To make it more precise, denote
w?(q,p) = dpr*aM(g;p), where for (q,p) € T*(R")

aW(g;p) == ijdqj =< p,dg >€ A'(R") (2.14)

j=1

is the canonical Liouville 1-form on R™, < -,- > is the usual scalar product

in R™, pr : T*(R") — R™ is the bundle projection. One can now define a
mapping

dSq: R" — T/ (R"), (2.15)

such that dS,(h) € T;(R") is an exact 1-form for all ¢ € Mj and h € R",
yielding

(dS,)* (dpr*aM) = (dS,)*w® := d?S, = 0. (2.16)

Thereby the mapping (2.15) defines a so called generating function [1, 2] S, :
R"™ — R, satisfying on M;j} the relationship

praM(g;p)+ < t,dh >= dS,(h), (2.17)
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where ¢t € R™ is the set of evolutionprameters. From (2.17) one gets right away

that equality

Sq(h) = /qq <p,dq >‘ (2.18)

© M
g3

holds for any ¢,q(© € M;'. On the other hand one can define a one more

generating function S, : R™ — R, such that

dS, : R" — T (M}), (2.19)

where € M] = ?ZlS]l are global separable coordinates existing on M}’
owing to the Liouville-Arnold theorem. Thus one can write down the following

canonical relationsip:
<w,dp >+ <t,dh >=dS,(h), (2.20)

where w; = w;(u;; h) € Ty (S}) for every j = T,n. Whence one follows readily
that

n

S, (h) = Z/?) w(\; h)dA, (2.21)

J=1""F;

satisfying on M} C T*(R™) the following relationship

dS, +dLC, = dS,| (2.22)

q=q(u;h)

for some mapping £,, : R™ — R. As a result of (2.21) and (2.22) one gets that

the following important expressions
t; = 85#(h)/8h1, <p, 8(]/8#@ >=w; + 8,6#/8#1 (223)

hold for all i = 1,n. A construction similar to the above can be done subject
to the imbedded torus TJ C 7™(R") :

dSy(7) = _pida; + > pidyi, (2.24)
j=1 i=1
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where owing to (2.15) Sy(y) := S¢(€-7), &-v(h) =h, forall (g;7v) € U(M}}).

For angle coordinates ¢ € T one obtains from (2.24) that

i = 054(7) /0 (2.25)

foralli =1,n. As p; € R/27Z, i =1,n, from (2.26) one derives that

1 1 0 ~ 1 0
2 P dpi = 0ij = 5—o— ]{h) dSq(y) = 2 Lw <P dg >
J J

(2.26)

for all canonical cycles aj(h) C M, j =1,n, constituting a basis of the one
dimensional homology group H'(M]';Z). Thereby, owing to (2.26), one follows

that for all i =1,n "action” variables can be found as

Yi < p,dq > (2.27)

T or oM
Recall now that M;' ~ T7 are diffeomorphic also to ?:18}, where S}, j=1,n
, are some one-dimensional real circles. The evolution along any of vector fields
K;: T*(R") — T(T*(R")), j =1,n, on M} C T*(R") is known [1, 2] to
be a linear winding around the torus T7, that can be interpreted also this way:
the above introduced independent of each other global coordinates on circles
Sjl, j = 1,n, are such that the resulting evolution undergoes a quasiperiodic
motion. These coordinates being still called Hamilton-Jacobi ones prove to be
very important for accomplishing the complete integrability by quadratures via
solving the corresponding Picard-Fuchs type equations.

Let us denote these separable coordinates on the integral submanifold M}
~ @S} by p; €S}, j=T1,n, and define the corresponding imbedding
mapping m, : M — T*(R") as

q=q(u; h), p=p(u;h). (2.28)

There exist two important cases subject to the imbedding (2.28) .

The first case is related with the integral submanifold M;* € T*(R™) which
can be parametrized as a manifold by means of the base coordinates ¢ € R™ of
the cotangent bundle 7*(R™). This can be explained as follows: the canonical

Liouville 1-form a(") € A'(R™), in accordance with the diagram
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*

T*(Mp) ~ TH(®1,S}) < T*R")
prl pr | pr | (2.29)
M ~ @S} T R»

i

is mapped by the imbedding mapping 7 = pr - m, : M]' — R" not depending

on a set of parameters h € R", into the 1-form

a) =m%alV =3 w;(ug: ), (2:30)

j=1
where (p,w) € T*(®}_,S}) ~ ®7_,T*(S}). The imbedding mapping = :
M} — R™ due to the equality (2.30) makes the function £, : R — R to be

zero giving rise to the generating function S, : R™ — R, enjoying the condition

as, = dS’q|q:q(#;h) , (2.31)
where as before
Su(h) = > pyda; + > tydh, (2.32)
j=1 j=1

and det ||0q(p; h)/Oul|| # 0 almost everywhere on M]! for all h € R™. Similarly
to (2.23), one gets from (2.32) that

t; = 0S,(h)/Oh; (2.33)

for j = 1,n. Concerning the second part of the imbedding mapping (2.28) we
arrive due to the equality (2.30) at the following simple result:

pi =Y w;(u;: h)ou;/0q;, (2.34)

j=1
where i =1,n and det||0u/dq|| # 0 almost everywhere on 7(M;*) due to the
local invertibility of the imbedding mapping m : M;' — R"™. Thus, we can claim
that the problem of complete integrability in the first case is solved iff the only
imbedding mapping w: M} — R™ C T*(R"™) is constructed. This case was in

detail considered in [11], where the corresponding Picard-Fuchs type equations
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were built based on a one extension of Galisot-Reeb and Francoise results [18].

Namely, similarly to (2.13), these equations are defined as follows:
Ow;(pj; h)/Ohy = Pyj (g, wys h), (2.35)

where Py, : T%( ?:18}) x C* — C, k,j = 1,n, are some algebraic functions of
their arguments.

Concerning the second case when the integral submanifold M C T*(R")
can not be imbedded almost everywhere into the base space R™ C T*(R™), the
relationship like (2.32) doesn’t take place, and we are forced to consider the
usual canonical transformation from 7*(R™) to T*(R"™) based on a mapping
dLy : @%_,S; — T*(R"), where £, : ®”_,S} — R enjoys for all u € @7_,S} =
M7} > q the following relationship :

prea(gp) =Y w; duy + dLy(p). (2.36)
j=1

In this case we can derive for any p € ®?:18]l the introduced before hereditary

generating function £, : R™ — T*( ?:18;) as

ac, = d£q|q:q(p.;h) ) (2.37)
satisfying evidently the following canonical transformation condition:
aS,(h) = 3wy i h) duy + 3 tydhy + dL, (b), (2.38)
j=1 j=1

for almost all 4 € ®}_;S} and h € R™ . Based on (2.38) one can derive the

following relationships:
0L, (h)/Oh; = < p,0q/0h; >|M;: (2.39)

for all j = 1,2, p € ®7_;S] and h € R". Whence the following important
analytical result

n

Hj
te = ;1 /N o (Ow;(A; h)/Ohs)dA,

> i (13 1)(9q;/0ps) = ws + L, (h) [ Oprs (2.40)
j=1
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holds for all s = 1,2 and pu,pu® € ®7_,S} with parameters h € R™ being
fixed. Thereby we have found a natural generalization of the relationships (2.34)
subject to the extended integral submanifold imbedding mapping 7, : M;' —
T*(R™) in the form (2.28).
Assume now that functions w; : C x C"— C , j = 1,n, satisfy in general
Picard-Fuchs equations like (2.35), having the following [3] algebraic solutions:
n;—1
w;? + Z chC(/\;h)w;-c =0, (2.41)
k=0

where ¢j; : CxC"'—>C, k=0,n;—1, j = 1,n, are some polynomials in
A € C. Each algebraic curve of (2.41) is known to be in general topologically
equivalent due to the Riemann theorem [20] to some Riemannian surface I‘Elj ),
of genus g¢; € Z, j = 1,n. Thereby , one can realize the local diffeomorphism
p M} — ®?:1I‘§lj ), mapping homology group basis cycles Uj(-h) c My,
j = 1,n, into homology subgroup H; (®?:1F§lj);Z) basis cycles ¢;(I'y) C I‘;lj),

j =1,n, satisfying the following relationships:
(9) =™ pse op(T 2.42
p( Uj )_ank Uk( h)a ( . )
k=1

where nj, € Z, k=1, and j = 1,n, are some fixed integers. Based on

(2.42) and (2.37) one can write down, for instance, expressions (2.27) as follows:

1 n
Yi = 7T nij]{ wj()\;h)d/\, (243)

ZWZ; o;(Th)
where ¢ = 1,n. Subject to the evolution on M C T*(R™) one can easily
obtain from (2.39) that

n

dt; =Y (Ow;(py; h)/Ohs)dp; (2.44)

j=1

at dh; = 0 for all i = 1,n, giving rise evidently to a global 7—parametrization
of the set of circles ®?:1Sj1- C ®}L:1F§1j ), that is one can define some inverse

algebraic functions to Abelian type integrals (2.37) as

p=p(r;h), (2.45)
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where as before, 7 = ({1, 2, ..., t,) € R™ is an a vector of evolution parameters.
Recalling now expressions (2.28) for integral submanifold mapping =, : Mj' —
T*(R™), one can at last write down final expressed by ”quadratures” mappings

for evolutions on M}* C T*(R™) as follows:

q=q(u(r;h)) = q(m;h), p=p(u(r;h)) = p(r; h), (2.46)

where obviously, a vector (¢,p) € T*(R™) is quasiperiodic in each variable
t;cT,i=1n.

Theorem 2.4. Every completely integrable Hamiltonian system admitting
an algebraic submanifold M;* C T*(R™) pessesses a separable canonical trans-
formation (2.38) which is described by differential algebraic Picard-Fuchs type
equations whose solution is a set of algebraic curves (2.41).

Therefore, the main ingredient of this scheme of integrability by quadratures
is finding the Picard-Fuchs type equations (2.35) corresponding to the inte-
gral submanifold imbedding mapping (2.28) depending in general on R™ > h-
parameters for the case when the integral submanifold M} C T*(R™) can not
be imbedded into the base space R™ C T*(R™) of the phase space T*(R"™).
This is a subject

Based now on Theorem 2.1 one can find 1-forms h§1) € AYT*(R"™)),j =1,n,
enjoying the following identity on T*(R™) :

w@(q,p) = dej Ndg; = Zde A hg»l). (2.47)

j=1 j=1
The 1-forms h§1) € AY(T*(R")), j = 1,n, possess the stated before important
propertiy : pullbacked to the integral submanifold (2.10) gives rise to the global

linearization

aph) = Y = dt; (2.48)

where ﬁ;l) e AY (M), and  mpd/dt; = Kj - for all j = 1,n. The
expressions (2.48) combined with ones of (2.44) give rise easily to the following

set of relationships

psY = fj(awj (153 h)/Ohi)dp (2.49)

j=1
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at dh; = 0 for all j = Tnon MP = @S} c @Iy forall j=Tn
Since we are interested in the integral submamfold imbedding mapping (2.25)
being locally diffeomorphic in a neighborhood U(M]) C T*(R"™), the Jacobian
det ||0g(w; h)/Ou|| # 0 almost every where in U(M]'). On the other hand, as
it was proved in [4], the set of 1-forms B§1) e A'(M),j=1,n , canbein

general, represented in U(M}) as

R = Z RS (a, p)da, e (2.50)

h

where Bﬁ) :T*(R") — R, k,j =1,n, are some algebraic expressions of their
arguments. Thereby, one easily finds from (2.50) and (2.49) that

Ow;(pi; h) Ok = >~ WG (q(us k), p(ps 1)) (Oar (s 1) /Opss)
k=1 (2.51)

for all i,j = 1,n. Subject to p-variables in (2.51) we must owing to (2.40) use

the expressions

Zpa 3 h)(0q;/Ops) = ws+ OLL(h)/Ops, (2.52)
OLu(h)/Oh; = <p,0q/0h; >|ym

being true for s = I,n and all 4 € ®}_;S;, h € R™ in the neighborhood
UMy) c T*(R")
of equations (2.51):

chosen before. Thereby, we arrived at the following form

Ow;(pi; h) /0h; = Pji(p,wi h), (2.53)

where for all 4,5 = 1,n expressions

Bji(p,w; h) o= > B (q(us ), plps ) Oar /D) (2.54)

k=1

depend correspondingly only on FS) > (us, w;)- variables for each i € {1,n}

and all j = 1,n. This condition can be evidently written down as follows:

OPji(p, w; h) /O = 0, OPj;(u, w; h)/Owy, =0 (2.55)
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for j,i# ke {I,n} at almost all u € ®}_;S; and h € R". The set of condi-
tions (2.51) gives rise in general to a system of algebraic-differential equations
subject to the imbedding mapping pray, : M]} — R™ defined analytically by
(2.28) and the generating function (2.37). As a result of solving these equa-
tions we obtain evidently owing to (2.53) and (2.55) the following system of
Picard-Fuchs type equations:

Oy ) [Oh; = P wis ) (2.56)
where, in general, mappings
P, : T xR" - C (2.57)

are some algebraic expressions. Since the set of algebraic curves (2.41) must
enjoy the system (2.56), we can retrieve this set solving the Picard-Fuchs type
equations (2.56). The latter gives rise due to (2.39) and (2.28) to the integrabil-
ity of all flows on M} C T*(R™) by quadratures as was mentioned in Chapter
1.

Theorem 2.5. Let there be given a completely integrable Hamiltonian sys-
tem on the coadjoint manifold T*(R™) whose integral submanifold Mj C T*(R™)
is described by Picard-Fuchs type algebraic equations (2.56). The corresponding
imbedding mapping m, : M]" — T*(R"™) (2.28) is a soulution of a compati-
bility condition subject to the differential-algebraic relationships (2.55) on the
canonical transformations generating function (2.37).

To show that the scheme described above really leads to an algorithmic
procedure of constructing the Picard-Fuchs type equations (2.56) and the cor-
responding integral submanifold imbedding mapping 7, : M — T*(R™) in
the form (2.28), we apply it below in the Chapter 6 to some Hamiltonian sys-
tems including a so called truncated Focker-Plank Hamiltonian system on the

canonically symplectic cotangent space T*(R™). Making use of the represen-

tations (2.21) and (2.28) and equation (2.31), we have shown above that the
set of 1-forms (2.30) is reduced to the following purely differential- algebraic

: : 2n .
relationships on M :

Ow;(pi; h)/Ohj = Pji(pi, wis h), (2.58)
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generalizing similar ones of [31,18], where the characteristic functions Pj; :
T*(M*) = R, 4,j=1,n, are defined as follows:

P i (pi, wis h) := Py (p, wi b (2.59)

o -

It is clear that the above set of purely differential - algebraic relationships (2.33)
and (2.34) makes it possible to write down explicitly some first order compat-
ible differential-algebraic equations, whose solution yields the first half of the
desired imbedding (2.5) for the integral submanifold M} C M 2" in an open
neighborhood M, }%’; C M?". As a result of the above computations one can
formulate the following main theorem.

Theorem 2.6. The imbedding (2.5) for the integral submanifold M} C
M?*"  (compact and connected), parametrized by a regular parameter h € G*, is
an algebraic solution (up to diffeomorphism) to the set of characteristic Picard-
Fuchs type equations (2.35) on T*(M;]'), and can be represented in general case

[19] in the following algebraic-geometric form:

n
Wi+ e (Ah)w] T =0, (2.60)
s=1
where cjs : R x G* = R, s,5 =1,n are algebraic expressions, depending only
on the functional structure of the original abelian Lie algebra G of invariants on
M?". In particular, if the right-hand side of the characteristic equations (2.35)
is independent of h € G*, then this dependence will be linear in h € G*.

It should be noted here that some ten years ago an attempt was made in
[18,19] to describe the explicit algebraic form of the Picard-Fuchs type equations
(2.35) by means of straightforward calculations for the well known completely
integrable Kowalewskaya top Hamiltonian system. The idea suggested in [18,19]
was in some aspects very close to that devised independently and thoroughly
analyzed in [11] which did not consider the explicit form of the algebraic curves
(2.37) starting from an abelian Lie algebra G of invariants on a canonically
symplectic phase space M?2".

As is well-known, a set of algebraic curves (2.37), prescribed via the above
algorithm, to a given a priori abelian Lie algebra G of invariants on the
canonically symplectic phase space M>?" = T*(R") can be realized by means

of a set of nj—sheeted Riemannian surfaces FZj, j = 1,n, covering the
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corresponding real-valued cycles S}, j = 1,n, which generate the corresponding
homology group Hi(T";Z) of the Arnold torus T" ~ ®;?:1§}diffeomorphic to
the integral submanifold M} C M?".

Thus, upon solving the set of algebraic equations (2.37) with respect to
functions w; : S} x G* — R, j = 1,n, from (2.29) one obtains a vector
parameter 7 = (t1,...,t,) € R on M; explicitly described by means of the
following Abelian type equations:

n

Hs
ti=> [ dx dws(\;h)/Oh; = (2.61)

s=17 1Y

=> d\ Pjs(\, ws; ),

where j = 1,n, (u%h) € (®?:1I‘Zj) x G*. Using the expression (2.28) and
recalling that the generating function S : M xR™ — R is a one-valued map-
ping on an appropriate covering space (M;; H1(MJ*;Z)), one can construct via
the method of Arnold [4] the so called action-angle coordinates on M;’. Denote
the basic oriented cycles on M by o; C M, j =1,n. These cycles together
with their duals generate homology group Hi (M} Z) ~ Hy(T";Z) =0} _1Z;.
In virtue of the diffeomorphism M} ~ ?:18} described above, there is a
one-to-one correspondence between the basic cycles of Hi(M}';Z) and those

on the algebraic curves I',’, j = 1, n, given by (2.37):

p: Hi(My52Z) — @ Zjonj , (2.62)

where op,; C I')?, j = 1,n are the corresponding real-valued cycles on the
Riemann surfaces I')7, j =1, n.

Assume that the following meanings of the mapping (2.39) are prescribed:

ploi) = Bi_1Mij On,j (2.63)

for each i = 1,n, where n;; € Z, 4,5 = 1,n - some fixed integers. Then

following the Arnold construction [4,18], one obtains the set of so called action-
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variables on M C M?" :

Oh,s

1 n
Nje = %]{ s =y njs dX\ ws(\; h), (2.64)
9j s=1

where j = 1,n. It is easy to show [4,16], that expressions (2.41) naturally

define an a.e. differentiable invertible mapping
£:GF - R, (2.65)

which enables one to treat the integral submanifold Mj'" as a submanifold MY

C M?™, where
M? = {ue M :£(h) =~ €R"}. (2.66)

But, as was demonstrated in [18,32], the functions (2.43) do not in general gen-
erate a global foliation of the phase space M?2",as they are connected with both
topological and analytical constraints. Since the functions (2.41) are evidently
also commuting invariants on M?", one can define a further canonical trans-
formation of the phase space M?" generated by the following relationship on
M ,%?17
n n
D wjdpi+ > @ dy; = dS(uy), (2.67)
j=1 j=1

where ¢ = (p1,...,0n) € T™ are the so called angle-variables on the torus
T" ~ My and S: M7 xR" — R is the corresponding generating function.
Whence it follows easily from (2.28) and (2.38) that

pj =08 ;) /0v; = 235 p;v(h))/Ohs Ohs/0v; = (2.68)

" 1
= tswsi(7), Dy j{ dr =0jk
s=1 i

where Q:={ws; : R" =R, s,j=1,n }istheso called [4] frequency matrix,
which is a.e. invertible on the integral submanifold M} C M 2n_ As an evident
result of (2.45), we claim that the evolution of any vector field K, € I'(M?") for

a €G on the integral submanifold M} C M 2n s quasiperiodic with a set of
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frequencies generated by the matrix 2 ‘e Aut(R™), defined above. As exam-
ples showing the effectiveness of the above method of construction of integral
submanifold imbeddings for abelian integrable Hamiltonian systems, one can
verify the Liouville-Arnold integrability of all Henon-Heiles and Neumann type

systems described in detail in [21,22]; however, we shall not dwell on this here.

3 Integral submanifold imbedding problem for

a nonabelian Lie algebra of invariants.

3.1. We shall assume below that there is given a Hamiltonian vector field K €
I'(M?") on the canonically symplectic phase space M?*" = T*(R"), n € Z,,
which is endowed with a nonabelian Lie algebra G of invariants, satisfying all
the conditions of the Mishchenko-Fomenko Theorem 1.5, that is

dim G+rankG = dim M>" . (3.1)

Then, as was proved above, an integral submanifold M; C M?" at a
regular element h € G* is rankG =r—dimensional and diffeomorphic (when
compact and connected) to the standard r-dimensional torus T" =~ ®§:1Sgl"
It is natural to ask the following question: How does one construct the corre-

sponding integral submanifold imbedding
T M — M| (3.2)

which characterizes all possible orbits of the dynamical system K € I'(M?")?
Having gained some experience in constructing the imbedding (3.2) in the
case of the abelian Liouville-Arnold theorem on integrability by quadratures,
we proceed below to study the integral submanifold M C M?" by means of
Cartan’s theory [3,12,16,22] of the integrable ideals in the Grassmann algebra
A(M?"). Let Z(G*) be an ideal in A(M?"), generated by independent differ-
entials dH; € AY(M?") , j = 1,k, on an open neighborhood U(M]), where by
definition, » = dimG. The ideal Z(G") is obviously Cartan integrable [23,16]
with the integral submanifold M} C M?" (at a regular element h € G*) ,
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on which it vanishes, that is 7} Z(G") = 0. The dimension dim M = dim M?"-
dimG = r = rankG due to the condition (3.1) imposed on the Lie algebra G
It is useful to note here that owing to the inequality r < k for the rank G
, one readily obtains from (3.1) that dimG =k > n. Since each base element
H; € G, j=1,k, generates a symplectically dual vector field K; € T'(M?"),
j = 1,k, one can try to study the corresponding differential system K(G)
which is also Cartan integrable on the entire open neighborhood U(M})

C M?". Denote the corresponding dimension of the integral submanifold by
dim M} = dim K (G) =k. Consider now an abelian differential system K (Gp,) C
K (G), generated by the Cartan subalgebra Gj, C G and its integral submani-
fold M} C U(M}). Since the Lie subgroup G} = exp Gy, acts on the integral
submanifold M} invariantly (see Chapter 1) and dim M] = rank G =r, it
follows that M} = M. On the other hand, the system K(Gy) C K(G) by
definition, meaning that the integral submanifold M; is an invariant part of
the integral submanifold M} C U(M]) with respect to the Lie group G = exp G
- action on MF. In this case one has the following result.

Lemma 3.1. There exist just (n-r)e Z wvector fields Fj € K(G)/K(Gn),

j=1,n—r, for which
w?(F;, F;) =0 (3.3)

on UM]) forall i,j=1,n—r.

<«Proof. Obviouslthe matrix w(K) := {w®(K;,K;) : 4,j = 1,k} has
on U(M}) the rank w(K) = k —r, since dimgker(rjw®) = dimg (7.
K(Gr)) =r on M] at the regular element h € G*. Let us now complexify the
tangent space T'(U(M])) using its even dimensionality. Whence one can easily
deduce that on U(M]) there exist just (n —r) € Zy vectors (not vector
fields!) Kt e K©(G)/K®(Gn), j = T,n—r, from the complexified [24] factor
space  K®(G)/K®(Gy).To show this, let us reduce the skew-symmetric matrix
w(K) € Hom(R*~") to its selfadjoint equivalent w(K€) € Hom(C™ "), having
taken into account that dimg RF~" = dimg RFt"~2" = dimg R?("~") = dim¢
C"~" . Let now fJC € C"", j=1,n—r, beeigenvectors of the nondegenerate
selfadjoint matrix w(KC) € Hom(C"™"), that is

w(KC) f£ =X\ f5, (3.4)
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where 5\j eR, j=1,n—r,andforall i,j=1,n—r, < f;c,f;-c >=0; ;. The
above obviously means that in the basis {fj € K“(G)/K“(Gn) : j =1,n—r}
the matrix w(KC) € Hom(C"™") is strictly diagonal and representable as

n—r

WK =) NfFeclt (3.5)
j=1

where ®c is the usual Kronecker tensor product of vectors from C"~" Owing
to the construction of the complexified matrix w(KC) € Hom(C"™ "), one sees
that the space K¢(G)/K®(G,) ~ C*~" carries a Kéhler structure [24] with

respect to which the following expressions

Ww(K) =Imw(K), <-->g=Re<--> (3.6)
hold. Making use now of the representation (3.5) and expressions (3.6), one
can find vector fields Fj € K(G)/K(Gn), j = I,n —r, such that

w(F) = Imw(F%) = J, (3.7)
holds on U(M}) , where J € Sp(C"™") is the standard symplectic matrix,
satisfying the complex structure [24] identity J2? = —I. . In virtue of the
normalization conditions < fF, f >= d;, for all 4, j = T,n—r, one easily
infers from (3.7) that w®(F, Fj) = 0 for all 4, j = T,n —r, where by

definition

Fj := ReFy (3.8)

for all j =1,n—r, and this proves the lemma.»
Assume now that the Lie algebra G of invariants on M?" has been split

into a direct sum of subspaces as
G=Gn ®Gy , (3.9)

where G, is the Cartan subalgebra at a regular element h € G* (being abelian)
and th ~ G /Gy, is the corresponding complement to Gj. Denote a basis
of G, as {H; € G, : i = 1,r}, where dimG, = rankG = k € Z,, and
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correspondingly, a basis of Gn as {ﬁj € G ~ G/Gn : j = 1,k —r}. Then,
owing to the results of Chapter 1, the following relationships hold:

{H; H;} =0, h({H; Hy})=0 (3.10)

on the open neighborhood U(M}) C M?" for all i, j = I,r and s =
T,k —r. We have as yet had nothing to say of expressions h({H,, H,,}) for
s,m = 1,k — r. Making use of the representation (3.8) for our vector fields (if
they exist) F; € K(G)/K(Gy), j = 1,n —r,0ne can write down the following

expansion:
~ k:ir ~
Fl‘ = Zcﬂ(h)K] ; (311)
j=1
where ikjw@) = —dﬁj, cii :G* =R, i=1,n—-r, j=1k—r, arereal-

valued functions on G* being defined uniquely as a result of (3.11). Whence it
clearly follows that there exist invariants fs : U (M}) - R, s=1,n—r, such
that

k—r
—ipw® =Y cj(h) dH; = df, (3.12)
j=1

where f, = Z;:lr cjs(h)H; , s =T,n—r, holds on U(M}).
3.2. To proceed further , let us look at the following identity which is similar
t0(2.2):

(@ 1ig, ) (@i, )W) =0 = £(n + DINj_ dH;) (NI d fo) Aw®),
(3.13)

on U(M]). Whence, the following result is easily obtained using Cartan theory
[3,16]:
Lemma 3.2. The symplectic structure w® € A2(U(M])) has the following

canonical representation.:

w® ’
UMy =1

R T o S

)—ZdHJ/\ R+ dfon B (3.14)
j=1

where ﬁ(l),ﬁgl) e AL UWM])), j=1,r, s=1,n—r.

J
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The expression (3.14) obviously means, that on U(M}) C M?" the differen-
tial 1-forms 715»”, A e AYU(M)), j=1,r, s=1,n—r, are independent
together with exact 1-forms dHj;, j = 1,7, and dfs, s = 1n-—r.
Since dw® =0 on M?" identically, from (3.14) one obtains that the differen-
tials dﬁ;l), dh"V e A2(U(M])), j =T,r, s=T,n—r, belong to the ideal
I( Gn) C I(G*), generated by exact forms dfs, s=1,n—r, and dHj,
j =1,r, for all regular h € G*. Consequently, one obtains the following analog
of the Galisau-Reeb Theorem 2.1.

Theorem 3.3. Let a Lie algebra G of invariants on the symplectic space
M?"  be nonabelian and satisfy the Mishchenko-Fomenko condition (3.1). At a
regular element  h € G* on some open neighborhood U(M}) of the integral
submanifold M] C M?" there exist differential 1-forms Bg-l), j=1,n, and
BV s =T,n—r, satisfying the following properties:

D) WPy = Xjmr dHA RV dfon B
H; € G, j =1,r,is a basis of the Cartan subalgebra G, C G (being abelian),

and fs € G, s =1,n—r, are invariants from the complementary space
Gn =~ G/G;

ii) 1-forms B € ANU(MJ)), j=T,r, and B € AN U(ME)),
s=1,n—r, are exact on M, and satisfy the equations: Bg-l)(f(i) =0;; for
all i,5=1,r, ﬁ;l)(ﬁs) =0 and ﬁgl)(f{j) =0 forallj=1,7, s=1,n—r,
and izgl)(ﬁ'm) =08sm forall s,m=1,n—r.

< Proof. Obviously we need to prove only the last statement ii). Making
use of Theorem 3.3. , one finds on the integral submanifold M} C M?>" the
differential 2-forms dﬁ;l) e AXUM])), j=T,7 and dhl? € A2(U(MD)),

s =1,n —r, are identically vanishing. This means in particular, owing to the

classical Poincaré lemma [1,4,16], that there exist some exact 1-forms dt;, ; €
A UMY, j =T,r, and dtys € AL U(M})), s =T1,n—r, where & :
M} - R, j=Tr and ftps: M — R, s=T1,n—r, aresmooth
independent a.e. functions on M;]; they are one-valued on an appropriate
covering of the manifold M} C M?" and supply global coordinates on the

integral submanifold M} . Using the representation (3.14) , one can easily obtain
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that

o K{w@)‘U M Zdﬁj h;l)( Ki) + des Bgl)(-f{i) = dH;
R =t (3.15)
for all i = 1,7 and
_ iﬁmw(Q)‘U = ngj E;l)( o)+ des WO () = dfpm
RS = (3.16)

for all m =1,n —r. Whence, from (3.15) it follows on that on U(M}) ,
W) =68, BY(E) =0 (3.17)

for all 4,5 =1,r and s=1,n — r, and similarly, from (3.16) it follows that on
U(My),

7)oy OV -

forall j=1,7 and s,m =1,n— r. Thus the theorem is proved.»

Having now defined global evolution parameters ¢; : M n LR, j=1,7,
of the corresponding vector fields K ;=d/dt;, j=1,r, and local evolution
parameters ts: M?"NU(M]) — R, s=1,n—r, of the corresponding vector
fields Fl " :=d/dt,, s=1,n—r, one can easily see from (3.18) that the

(M)
equalities

t]|U(M}7;) = EJ? tS‘U(MZL) = th,s (319)

hold for all j =1,7, s=1,n—r, up to constant normalizations. Thereby,
one can develop a new method, similar to that of Chapter 2, for studying the
integral submanifold imbedding problem in the case of the nonabelian Liouville-
Arnold integrability theorem.

Before starting, it is interesting to note that the system of invariants
G- :=Gn @ spang{fs €G/Gn s =T,n—r}

constructed above, comprise a new involutive (abelian) complete algebra G,

to which one can apply the abelian Liouville-Arnold theorem on integrability by
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quadratures and the integral submanifold imbedding theory devised in Chapter
2, in order to obtain exact solutions by means of algebraic-analytical expressions.
Namely, the following corollary holds.

Corollary 3.5. Assume that a nonabelian Lie algebra G satisfies the
Mishchenko-Fomenko condition (5.1) and M] C M?" is its integral submanifold
(compact and connected) at a regular element h € G*, is diffeomorphic to the
standard torus T" ~ My’ . Assume also that the dual complete abelian algebra
G, (dimG, = n = 1/2dim M?") of independent invariants constructed above
is globally defined . Then its integral submanifold My’ C M?" is diffeomorphic
to the standard torus T" ~ My’ , and contains the torus T" ~ My as a direct
product with some completely degenerate torus T"™", that is My’ ~ MpyxT"™".

Thus, having successfully applied the algorithm of Chapter 2 to the algebraic-
analytical characterization of integral submanifolds of a nonabelian Liouville
-Arnold integrable Lie algebra G of invariants on the canonically symplectic
manifold M?" ~ T*(R"), one can produce a wide class of exact solutions rep-
resented by quadratures - which is just what we set out to find. At this point
it is necessary to note that up to now the (dual to G ) abelian complete algebra
G, of invariants at a regular h € G * was constructed only on some open neigh-
borhood U(M;]) of the integral submanifold M} C M?". As was mentioned
before, the global existence of the algebra G strongly depends on the possibility
of extending these invariants to the entire manifold M?2". This possibility is in
1-1 correspondence with the existence of a global complex structure [24] on the
reduced integral submanifold M i(f =M ¥ /Gp, induced by the reduced sym-
plectic structure 7* w € A2(MF/G},), where m, : M} — M?" is the imbed-
ding for the integrable differential system K(G) C I'(M?>"), introduced above.
If this is the case , the resulting complexified manifold — ©M;'" ~ M, szfr)
will be endowed with a Kéahlerian structure, which makes it possible to produce
the dual abelian algebra G, as a globally defined set of invariants on M?2" .

This problem will be analyzed in more detail in Chapter 5.

4 Examples
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4.1. Below we consider some examples of nonabelian Liouville-Arnold integra-
bility by quadratures covered by Theorem 1.5 .

Example 4.1. Point vortices in the plane.

Consider n € Z, point vortices on the plane R2, described by the Hamilto-

nian function

1 n
H=— > &&Wnla—pl (4.20)
i#j=1

with respect to the following partially canonical symplectic structure on M?" ~
T*(R"™) :

w® =" &dp; A dgj, (4.21)
J=1

where  (pj,q;) € R?, j = 1,n, are coordinates of the vortices in R%. There

exist three additional invariants

Pi=) &g, Pa=)Y_ &, (4.22)
j=1 j=1

1 n
P =23 &(q +1),
j=1

satisfying the following Poisson bracket conditions:

(PP} ==Y "¢, {P,P}=-P, ,{P,P}=P,
i=1 (4.23)

(P.HY=0 = {P;,H}.

It is evident, that invariants (4.1) and (4.3) comprise on Y7, & = 0 a
four-dimensional Lie algebra G , whose rank G = 2. Indeed, assume a regular
vector h € G* is chosen, and parametrized by real values h; € R, j = 1,4,

where
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WP) =hs, h(P)=hs, h(H)=hy (4.24)

and ¢ = 1,2. Then , one can easily verify that the element

Qu= () &P ) P, (4.25)
j=1 i=1

belongs to the Cartan Lie subalgebra G;, C G, that is

h{Qn, Pi}) =0, h({Qn P})=0. (4.26)

Since {Qn, H} = 0 for all values h € G* | we claim that Gy, = spang{H, Qr}
- the Cartan subalgebra of G. Thus, rankG =dim G, = 2, and one comes right
away that the condition (3.1)

dim M?" = 2n = rankG+dim G = 6 (4.27)

holds only if n = 3. Thereby, the following theorem is proved.

Theorem 4.1. The three - vortez problem (4.1) on the plane R? is non-
abelian Liouville-Arnold integrable by quadratures on the phase space MS ~
T*(R3) with the symplectic structure (4.2).

As a result, the corresponding integral submanifold M7 C MS® is two-

dimensional and diffeomorphic (when compact and connected) to the torus T2
~ M? , on which the motions are quasiperiodic functions of the evolution pa-
rameter.

Concerning the Corollary 3.5 , the dynamical system (4.1) is also abelian
Liouville-Arnold integrable with an extended integral submanifold M, ,?’T c MS
, which can be found via the scheme suggested in Chapter 3. Using simple
calculations, one obtains an additional invariant @ = (Zj’:l &)P— Z?:l pP? ¢
G, which commutes with H and P of §Gj . Therefore, there exists a new

complete dual abelian algebra G, = spang {Q, P, H} of independent invariants
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on M® with dimG, =3 = 1/2dim M°, whose integral submanifold M} = C
M (when compact and connected) is diffeomorphic to the torus T? ~ M7? x S!.

Note also here, that the above additional invariant @ € G, can be nat-
urally extended to the case of an arbitrary number n € Z, of vortices as
follows: Q= (37, &)P — 200, P? € G,, which obviously also commutes
with invariants (4.1) and (4.3) on the entire phase space M?2".

Example 4.2. A material point motion in a central field.

Consider the motion of a material point in the space R under a central

potential field whose Hamiltonian

3
H=23" 02+ Q). (428)
j=1

contains a central field @ : Ry — R . The motion is takes place in the canonical

phase space M® = T*(R? ), and possesses three additional invariants:

Py =pagz —pq, Po=p3q1 —p1g3, P3s=pigo—p2q1 ,

(4.29)

satisfying the following Poisson bracket relations:
(PLPY=Ps, {PyP)Y=P, (PP} =P, . (4.30)
Since {H,P;} = 0 for all j = 1,3, one sees that the problem under

consideration has a four-dimensional Lie algebra G of invariants, isomorphic
to the classical rotation Lie algebra so(3) x R ~ G . Let us show that at
a regular element h € G* the Cartan subalgebra G, C G has the dimension

dim G, = 2 = rankG . Indeed, one easily verifies that the invariant
3
Py=> h;P; (4.31)
j=1

belongs to the Cartan subalgebra Gy, , that is

{H,P,} =0, h({Py,P;})=0 (4.32)
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for all j =1,3. Thus, as the Cartan subalgebra G;, = spang{H and P, C G},

one gets dim Gy, = 2=rankGy,, and the Mishchenko-Fomenko condition 3.1

dim M% = 6 = rankG 4+ dim G = 4 + 2 (4.33)

holds. Hence one can prove its integrability by quadratures via the nonabelian
Liouville Liouville-Arnold Theorem 1.5 and obtain the following theorem:
Theorem 4.3. [t follows from Theorem 1.5 that the free material point
motion in R® is a completely integrable by quadratures dynamical system on
the canonical symplectic phase space MY = T*(R3). The corresponding integral
submanifold M? C MS at a reqular element h € G* (if compact and connected)
is two-dimensional and diffeomorphic to the standard torus T? ~ M} .
Making use of the integration algorithm devised in Chaptersl and 2, one can
readily obtain the corresponding integral submanifold imbedding mapping 7, :
M7 — M5 by means of algebraic-analytical expressions and transformations.
There are clearly many other interesting nonabelian Liouville-Arnold inte-
grable Hamiltonian systems on canonically symplectic phase spaces that arise in
applications, which can similarly be integrated using algebraic-analytical means.

We hope to study several of these systems in detail elsewhere.

5 Existence problem for a global set of invari-

ants

5.1 It was proved in Chapter 3, that locally, in some open neighborhood U (M]) C
M?" of the integral submanifold M} C M?" one can find by algebraic-
analytical means just n—r € Z, independent vector fields F; € K(G)/K(Gn)N

NU(M;) , j=1,n—r, satisfying the condition (3.3). Since each vector field

F; € K(G)/K(Gn), j =1,n—r, is generated by an invariant H;€ D( U(M}))
, 7 =1,n—r, it follows readily from (3.3) that

{Hi,H;} =0 (5.1)
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for all 4,5 = I,n—r. Thus, on an open neighborhood U(M]) there ex-
ist just n — 7 invariants in addition to H;e D(U(M})) , j = Ln—r,
all of which are in involution. Denote as before this new set of invariants as
G-, keeping in mind that dimG, = r+ (n —r) = n € Z;. Whence, on an
open neighborhood U(M}) C M?" we have constructed the set G, of just
n = 1/2dim M?" invariants commuting with each other, thereby guarantee-
ing via the abelian Liouville-Arnold theorem its local complete integrability by
quadratures. Consequently, there exists locally a mapping m, : M, ,’f’f — M?",
where My = U(Mj;) N MF is the integral submanifold of the differential sys-
tem K(G), and one can therefore describe the behavior of integrable vector
fields on the reduced manifold M, ,37(;1_T) := My."/Gy,. For global integra-
bility properties of a given set G of invariants on (M?", w(®)), satisfying the
Mishchenko-Fomenko condition (3.1), it is necessary to have the additional set
of invariants ~ H;€ D( U(M])), j = T,n —r, extended from U(M]) to the
entire phase space M?". This problem evidently depends on the existence of
extensions of vector fields F; € D(U(M})), j = I,n—r, from the neighbor-
hood U(M]) C M?" to the whole phase space M?" . On the other hand , as
stated before, the existence of such a continuation depends intimately on the
properties of the complexified differential system K©(G)/K®(G,), which has a
nondegenerate complex metric  w(KC) : T(MZ’(:L_T))C X T(MZ’(:L_T))C — C,
induced by the symplectic structure w® € A2(M?>™) . This point can be clar-
ified more by using the notion [24-27] of a Kéhler manifold and some of the
associated constructions presented above. Namely, consider the local isomor-
phism T(MZ’(:L_T))C o~ T(CM}’;;T), where CM}Z;T is the complex (n — r)-
dimensional local integral submanifold of the complexified differential system
K®(G)/K®(Gx) . This means that the space T(M,?,(ffr)) is endowed with the

standard almost complex structure

T TOGD) = T ), J =1, (5.2)

such that the 2-form w(K) := Imw(K®) € AQ(M,%’(;%T)) induced from the
above metric on T(CM;'.") is closed, that is dw(K) = 0. If this is the case, the
almost complex structure on the manifold 7'(M ,?(f =) is said to be integrable.

Define the proper complex manifold ©M ,':;T, on which one can then define
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global vector fields F; € K(G)/K(Gr), j = 1,n — r, which are being sought for
the involutive algebra G, of invariants on M?2" to be integrable by quadratures
via the abelian Liouville-Arnold theorem. Thus the following theorem can be
obtained.

Theorem 5.1. A nonabelian set G  of invariants on the symplectic
space  M?*" ~ T*(R") , satisfying the Mishchenko-Fomenko condition 3.1, ad-
mits algebraic-analytical integration by quadratures for the integral submanifold
imbedding m, : M} — M?", if the corresponding complexified reduced manifold
CM;Z;T ~ Mi(ffr) = M}’f;r/Gh of the differential system K©(G)/K(Gy) is
Kahlerian with respect to the standard almost complex structure (5.1) and the
nondegenerate complex metric  w(KC) : T(M,i(f_r))@ X T(M,i(:_r))(c — C,

induced by the symplectic structure w® € A%2(M?>™) is integrable, that is
dImw(K®) = 0.

Theorem 5.1 shows, in particular, that nonabelian Liouville-Arnold integra-
bility by quadratures does not in general imply integrability via the abelian
Liouville-Arnold theorem; it actually depends on certain topological obstruc-
tions associated with the Lie algebra structure of invariants G on the phase

space M?". We hope to explore this intriguing problem in another place.

6 Supplement.

Here we consider some examples of investigations of integral submanifold imbed-
ding mappings for abelian Liouville-Arnold integrable Hamiltonian systems on
T*(R?).

6.1.The Henon-Heiles system.

This flow is governed by the Hamiltonian

1 1 1
H, = 51?% + 5193 +q143 + gq:f (6.1)

on the canonically symplectic phase space M?* = T*(R?) with the symplectic

structure

2
w® = Z dp; N dgj. (6.2)

j=1
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As is well known, there exists the following additional invariant that commutes
with (6.1):

Hy = pip2 + 1/3¢5 + qiqe, (6.3)

that is  {Hi, H2} =0 on the entire space M*.

Take a regular element h € G := {H; : M* - R:  j=1,2}, with fixed
values h(H;) =h; € R, j=1,2. Then the integral submanifold

Mj; == {(g;p) € M" : h(H;) = hj €R, j =12}, (6.4)
if compact and connected, is diffeomorphic to the standard torus T? ~ S! x
S owing to the Liouville-Arnold theorem, and one can find cyclic (separable)
coordinates p; € S', j =1,2, on the torus such that the symplectic structure
(6.2) will take the form:

2
w® = "dw; Ndp; (6.5)
j=1

where the conjugate variables w; € T*(S'), j=1,2, on M7 depend only on

the corresponding variables p; € Sjl-, j =1,2. In this case it is evident that the
evolution along M7? will be separable and representable by means of quasi-
periodic functions of the evolution parameters.

To show this, recall that the fundamental determining equations (2.34)
based on the 1-forms Bg-l) € A(M}), j=1,2, satisfy the identity

2 2
S aH; AR =S dps Adg; (6.6)
j=1 j=1
Here
2
. _
RS =" hyr(a, p)dar, (6.7)
k=1
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where j = 1,2. Substituting (6.7) into (6.6), one obtains

_ d d . d d
h§1) _ ];1 Q12 1;2 (1227 hg) _ 52 (112 + ];1 QQQ ' (6.8)
Py —D3y P — D3 b3y —P1 P1—P3

On the other hand, the following implication holds on M? C M*:

2

2
af!) = Y wilugi h)dpy =y pidg; - = al, (6.9)
j=1 J=1

where we have assumed that the integral submanifold M? admits the local

coordinates in the base manifold R? endowed with the canonical 1-form 0[;11) €

A(M}) as given in (6.9). Thus, making use of the imbedding 7, : M} —
T*(R?) in the form

g =qi(wh), pj=pi(wh), (6.10)

j = 1,2, one readily finds that the equalities

2

pi =Y wilpk;h) Oux/g; (6.11)

k=1

hold for j =1,2 on the entire integral submanifold M?.
Substituting (6.11) into (6.8) and using the characteristic relationships
(2.34), one obtains after simple but cumbersome calculations the following

differential-algebraic expressions:
9q1/0m1 — 0q2/0pu1 = 0, 0g1/dpu2 + g2/Ous = 0, (6.12)
whose simplest solutions are
= (m+p2)/2, q=(m—p2)/2. (6.13)
Using expressions (6.11) one finds that
pr=wi+wz, pz=w;—wz , (6.14)

where
wlzy/h1+h2—4/3u:f, ’u}g:\/hl—hg—ﬁl/g/},g. (615)
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Consequently, one obtains the separable [15] Hamiltonian functions (6.1) and

(6.3) in a vicinity of the cotangent space T*(M?) :

1 1 2 1 1 2
hi = gt 4 gl 4 (i + ), he = gwi - Swit g

3 .3
5 5 3 5 5 3(u1 13),

(6.16)

which generate the following separable motions on M? C T*(R?) :

dul/dt = ahl/awl =1/h1+ hy — 4/3/1%, (6.17)
d/l,g/dt = 6h1/6w2 = \/hl - h2 - 4/3/1%

for the Hamiltonian (6.1), and

d,ul/dx = 8h2/8w1 = \/hl + hy — 4/3#?, (618)
dug/dt = 8h1/8w2 = —\/hl — hQ — 4/3#2

for the Hamiltonian (6.3), where x,t € R are the corresponding evolution
parameters.

Analogously, one can show that there exists [28, 29] a similar to (6.13) and
(6.14) integral submanifold imbedding for the following integrable modified
Henon-Heiles involutive system:

1, 1 16
Hy = 50} + 505+ 043 + 5 d (6.19)

Hy = 9p3 + 3619345 — 12p1p2g5 — 2¢5(45 + 643)
where {Hi, H1} =0 on the entire phase space M* = T*(R?).
Based on considerations similar to the above, one can deduce the following
[29] expressions:
3 w1+ wa

1
Q= —Z(Ml + p2) — = (

6.20
8 p1 — 2 (6.20)

@ = 2o/ (i — iz), w1 = \/2/3u8 — 4/3/hz — 8hy |
B i BN
2¢/—6(p1 + p2 +4qyy pa1 — p2

P2 = Vs iia + 401)/ (3 p2)) , w3 = \/2/38 + 4/3y/ha — 8hy |

p1 — pape + 4(p1 + p2)qr + 3243,

42



thereby solving explicitly the problem of finding the corresponding integral sub-
manifold imbedding 7, : M7 — T*(R?) that generates separable flows in the
variables (u ,w) € T*(M?).

6.2. A truncated four-dimensional Focker-Plank Hamiltonian sys-
tem on T*(R?) and its integrability by quadratures.

Consider the following dynamical system on the canonically symplectic phase
space T*(R?) :

dqi/dt = p1 + alqr + p2)(q2 +p1),  dg2/dt = pa,
dpy/dt = —(q1 + p2) — algep1 + 1/2(p3 +p3 +¢3)], ¢ = Ki(a,p),
dpa/dt = —(g2 + p1), (6.21)

where K7 : T*(R?) — T(T*(R?)) isthe corresponding vector field on T*(R?) >
(¢g,p), t € R is an evolution parameter, called a truncated four-dimensional
Focker-Plank flow. It is easy to verify that functions H; : T*(R?) - R, j =1,2,

where

Hy =1/2(p? + p3 + q}) + qip2 + a(q1 + pa)[agepr + 1/2(p? + 3 + ¢3)]
(6.22)

and
Hy =1/2(p} + p5 + ¢3) + @211 (6.23)

are functionally independent invariants with respect to the flow (6.21). More-
over, the invariant (6.22) is the Hamiltonian function for (6.21), that is the

relationship
ik,w? = —dH, (6.24)

holds on T™*(R?), where the symplectic structure w(® € A%(T*(R?)) is given

as follows:

2
w® = d(pr*a(l)) = dej A dgj, (6.25)
j=1

with a(®) € A'(R?) to be the canonical Liouville form on R?:

2
oW (g;p) = ijdqj (6.26)
j=1
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for any (q,p) € T*(R?) ~ A} (R?).
The invariants (6.22) and (6.23) commute evidently with each other subject

to the associated Poisson bracket on T*(R?) :
{H1,H3} =0. (6.27)

Thereby, owing to the abelian Liouville-Arnold theorem [1, 2] the dynamical
system (6.21) is completely integrable by quadratures on T%(R?), and we can
apply the scheme devised in chapter 2 to the commuting invariants (6.22) and

(6.23) subject to the symplectic structure (6.25). One easily calculates that

2
W@ =5"am; AnY, (6.28)
=1
where the corresponding 1-forms 7:h{" := h{") € A1(M2), i =T,2, are given

as

B — p2dq1 —(p1+42)dgs
1 p1p2—(p1+q2)(q1+p2)—ahz(p1+q2)’

7(1) _ —[(q1+p2)(1+apz)+ahsldg+(p1talhe+(g2+p1)( q1+p2)))d
h2 — q1TP2 p21p2_?q2?¢p1)121ah2+ 2ql+q;022)pl q1TP2 qz’ (629)

and an invariant submanifold M7 C T*(R?) is defined as

M? = {(q,p) € T*(R?) : H;(q,p) =h; € Rji=T1,2} (6.30)

for some parameters h € R? and Based now on expressions (6.30), and (2.38)
one can easily construct functions P;(w;h), 4,7 =1,2, in (2.53), defined on
T*(Mp) ~ T*(®3_,S}) subject to the integral submanifold imbedding map-
ping m, : M} — T*(R?*) in coordinates pu € ®§:18j1- - ®?:1I‘§5), which
we don’t write down in detail due to their a bit long and cumbersome form.
Having applied then the criterion (2.55), we arrive at the following compati-

bility relationships subject to the mappings ¢ : (®7_,S]) x R*> — R* and
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p:(®52,S)) x R? = T (R?) :

8(]1/8#1 — 8(]2/8#2 = 0, wlﬁﬁﬂ/awl — wgﬁﬁﬂ/ﬁwg = 0,
62q1/6u26h2 + 82w2/8u28h2 =0,

(9101 /8h1 (8q1/8h1) = (9102/8h1 (86]2/8h1),
(6.31)
w18w1/6h1 — wgawg/ahg = 0,

8(w18w1/8h2)/8h2 — azﬁql/aul = 0,

and so on,subject to variables p € ®?:18} and h € R2. Solving equations like

(6.31) , one can find right away that the expressions

p1 = w1, P2 = W2,

q1 = c1 + p1 — wa(pe; h),
q2 = ca + p2 — w1 (p1; h),
L, (h) = —wiws,

(6.32)

where c¢;(h1,hs) € R, j =1,2, are constant, hold on T*(M?), giving rise to
the following Picard- Fuchs type equations in the form (2.56):

ﬁwl(ul;h)/ahl = 1/w1,
0 :h)/Ohy = a?h ,
wi(p1;h)/Ohs = ahy /w: (6.33)
(9102(#2; h)/8h1 =0
8w2(u2; h)/ahg = 1/w2.
The Picard-Fuchs equations (6.33) can be easily integrated by quadratures as
follows:
w% + kl(/l,l) - a2h2 —2h, =0,
(6.34)
U)% + kz(ug) — 2h2 = 0,
where k;j : S} — C, j = 1,2, are still unknown functions. For them to

be determined explicitly, it is necessarily to substitute (6.32) into expressions
(6.22) and (6.23), making use of (6.34) that amounts to the following results:

ki=pi, ke =p3 (6.35)
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under the condition that ¢; = —ahy, c2 = 0. Thereby, we have constructed
owing to (6.34) the corresponding algebraic curves ng), j =12, (2.41) in the

explicit form:

rfY = {(\wn) s wd + 22 = a?h3 - 2h) = 0},
(6.36)
I‘f) = {(\, w2) : w3 + A% — 2hy = 0},

where (A\,w;) e CxC, j=1,2,and h € R? are arbitrary parameters.
Making use now expressions (6.37) and (6.32), one can construct in explicit
form the integral submanifold imbedding mapping 7 : M7 — T*(R?) for the
flow (6.21):

@1 =p1 —\/2ha — p3 —ah3,  p1=wi(p;h),
(6.37)

g2 = po — \/2h1 — a?h3 — 2, po = wa(usa; h),

where (u, w) € ®?:1I‘§Lj). As was mentioned before in chapter 2, formulas (6.37)
together with explicit expressions (2.40) make it possible right away to find
solutions to the truncated Focker-Plank flow (6.21) by quadratures, thereby
completing its integrability.
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