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Abstract. This work concerns representability of arithmetical notions
in finite models. It follows the paper by Marcin Mostowski [8], where the
notion of FM—representability has been defined. We discuss how far this
notion captures the methodological idea of representing infinite sets in
finite but potentially infinite domains.

We consider mainly some weakenings of the notion of FM-
representability. We prove that relations weakly FM representable are ex-
actly those being X9 definable. Another weakening of the notion, namely
statistical representability, turns out to be equivalent to the original one.
Additionally, we consider the complexity of sets of formulae naturally
defined in finite models. We state that the set of sentences true in almost
all finite arithmetical models is 9 complete and that the set of formulae
FM-representing some relations is IT9—complete.

1 Introduction

This work concerns mainly the following problem.

Let us suppose that our world is finite, but not of a restricted size. It
means that everytime it can be enlarged by a finite number of new entities.
This assumption says, in Aristotelian words (see [1], Physics, book 3),
that the world is finite but potentially infinite. Then, which infinite sets
can be reasonably described in our language?

For simplifying the problem we restrict our attention to sets (and relations) of
natural numbers and we assume that our world contains only natural numbers.

Technically, the problem appears when one is trying to transfer some classical
ideas into finite models theoretic framework. It requires frequently a uniform
representation for various infinite relations in finite models. As a rule, uniformity
means that the representation of a relation is given by one formula. Of course
in a single finite model only a finite approximation of any infinite relation can
be defined. Therefore we have to consider representability in infinite classes of
finite models — intuitively finite but potentially infinite models.® In the paper 8]

3 In the context of foundations of mathematics a very similar approach to potential
infitnity is presented by Jan Mycielski in [11].



an attempt to make the notion precise has been made and FM representability
theorem has been proved (see Theorem 5).1

Let R be a set of natural numbers. Then we say that R is FM-represented
by a formula ¢(z) if for each initial segment I of natural numbers p(z) cor-
rectly describes R for all elements from [ in all sufficiently large finite inter-
pretations. Originally the notion was motivated by an attempt to transfer the
Tarski’s method of classifying concepts by means of truth definitions to finite
models.® Tn this case we have to describe syntax of considered languages in fi-
nite models. Needed syntactical relations are essentially infinite. Therefore, the
notion of FM representability appeared as an answer to this problem.

In this paper we concentrate on the notion of FM-representability and some
possible weakenings of it. We show that, in a sense, the notion captures strongly
the idea of representing relations in finite models.

2 Basic Notions

We start with the crucial definition of FM-domain.

Definition 1. Let R = {Ry,...,Ri} be a finite set of arithmetical relations
on w. By an R domain we mean the model A = (w, Ry,...,Ry). We consider
finite initial segments of these models. Namely, for n > 1, by A,, we denote the
structure

A, ={0,...,n—1},R},...,Rp),

where, for ¢ = 1,...,k, the relation R} is the restriction of the relation R; to
the set {0,...,n — 1}. We treat n-ary functions as n + 1-ary relations.

The FM~-domain of A (or FM—-domain of R), denoted by FM(A), is the
family {A,, : n € w}.

Throughout this paper we are interested mainly in the family FM(N), for
N = (w,+, x). By arithmetical formulae we mean first order formulae with
addition and multiplication treated as ternary predicates. The standard ordering
x < y is definable by the formula dzxz 4+ z = y. Its strict version, z < y, is
defined as < y A x # y. The constants 0 and MAX are defined respectively as
< smallest and < greatest elements. For each n € w, by 7 we mean the constant
denoting the n-th element in the ordering < counting from 0. If there is no such
element we take 7 = MAX. We write z|y for 3z < y(1 < z A zz = y). It is
known that all these notions are definable by bounded formulae. Thus, their
interpretations conform to their intended meaning also in models from FM(N).

* Some consequences of this idea are also discussed in [9], [6].

® The basics of the method of truth definitions in finite models were formulated in [7].
The paper [8] covers [7], giving additionally some refinement of the method. It was
applied then in [9], and [4] for classifying finite order concepts in finite models. Some
applications of the method for classifying computational complexity classes can be
found in [3].



Let us mention, that in [9] a finite axiomatization ST has been presented
which characterizes, up to isomorphism, the family FM(N) within the class of
all finite models.

The other notions which we use here are fairly standard, one can consult
e.g. [2] and [12] for model or recursion theoretic concepts, respectively. We write
{e} to denote the partial function computed by the Turing machine with the
index e. {e}(n)] means that the function {e} is not defined on n, and {e}(n)|
means that {e}(n) is defined. We put W, = {n € w: {e}(n)|}.

We consider the family of X0 (II9) relations which are definable in N by X0
(I10) formulae. A2 are relations which are definable by X9 and IT formulae.

R C w" is many one reducible to S C w*® (R <,, S) if there exists a total
recursive function f such that for all aq,...,a, € w,

(a1,...,a,) € Rif and only if f(ay,...,a,) € S.

A relation S is complete for a class K if S € K and for any other R € K, R <,,, S.

We say that R is Turing reducible to S (R <r S) if there is an oracle Turing
machine which decides R using S as an oracle. R and S are Turing equivalent
if R <p S and S <p R. The degree of R, denoted by deg(R), is the class of
all relations which are Turing equivalent to R. In particular, 0’ is the degree
of any recursively enumerable (RE) complete set, and 0” is the degree of any
9 complete set.

We use bald characters, e.g. a, for valuations in a given model A. We write
| A| for the universe of a model A. If ¢(z1,...,xx) is a formula in the vocabulary
of A with all free variables between z1, ...,z we write A = plaq, ..., ay], for
ai,...,ax € |A|, when ¢ holds in A under any valuation a for which a(z;) = a;,
fori=1,... k.

Definition 2. Let p(z1,...,x,) be an arithmetical formula and a4, ..., a, € w.
We say that ¢ is true of ai,...,a, in all sufficiently large finite models ( g
vlay,...,ar]) if and only if Ik¥Yn > k N, = ¢lai, ..., a.] (or, in other words, if
@ is true of ai,...,a,. in almost all finite models from FM(N)).

For each unbounded family of finite models IC, by sl(K) we denote the set of
formulae which are true in almost all models from KC. In particular, =g @ means
that ¢ € sl(FM(N)).

Definition 3. We say that R C w" is FM-represented by a formula
o(x1,...,2) if and only if for each aq,...,a, € w both of the following con-
ditions hold:

(i) Est plaa,-..,ar] if and only if R(as,...,a,).

(i1) Eq —plar,...,ar] if and only if =R(aq,...,a,).

We say that R is FM-representable if there is an arithmetical formula ¢ which
FM represents R.

The notion of FM-representability has been defined in [8] in a slightly dif-
ferent way. We summarize various equivalent conditions in the following



Proposition 4. Let R C w" and p(z1,...,x,) be a formula in a vocabulary of
FM(N). The following conditions are equivalent:

1. o(x1,...,2.) FM represents R,
2. for each m there is k such that for all ay,...,a, < m,

R(ai,...,ar) if and only if N; |= ¢laq, ..., a],
for alli > k.

The second condition expresses the intuition that ¢ FM represents R in FM(N)
if each finite fragment of R is correctly described by ¢ in all sufficiently large
models from FM(N).

The main characterization of the notion of FM-representability is given by
the following

Theorem 5 (FM-representability theorem, see [8]). Let R C w". R is
FM-representable if and only if R is of degree < 0’ (or, equivalently, is AY—
definable).

The theorem does not depend on the strength of the underlying logic provided
that the truth relation for this logic restricted to finite models is recursive and
it contains first order logic. On the other hand, it is surprising that the theorem
requires relatively weak arithmetical notions. In [5] it is proved that it holds in
FM domain of multiplication. It is improved in [10] to the divisibility relation.

3 Weak FM-representability

As the most natural weakening of the notion of the notion of FM-representability
we consider the following:

Definition 6. A relation R C w" is weakly FM representable if there is a for-
mula @(x1,...,2.) with all free variables among x1,...,x, such that for all
ai,...,ar € W,

(a1,...,a;) € A if and only if =g pla,...,a].

Since the definition of =4 ¢ can be expressed as an X9 sentence the following
holds.

Fact 7 Let R Cw". If R is weakly FM representable, then R € X9.

The reverse of the implication from Fact 7 will be proved after evaluating
the degree of the theory sl(FM(N)).

As an analogue of the relation between FM-representability and weak FM-
represetability we recall the relation between strong and weak representability
in Peano arithmetic. We say that a relation R C w" is strongly PA representable



if there is a PA formula (1, ...,z,) with all free variables among x1, ..., z,
such that for all nq,...,n, € w,

(n1,...,n,) €ER < PAF p(f1,...,0)
(n1,...,ny) € R <= PAF =p(f1,...,0).

R C w" is weakly PA-representable if there is a PA—formula ¢(z1,...,2,)
with all free variables among x1, ..., z, such that for all ny,...,n, € w,

(n1,...,n.) € R < PAF o(f1,...,0).

A relation R is strongly PA-representable if and only if it is decidable.
R is weakly PA-representable if and only if R is recursively enumerable. If
R and its complement are weakly PA-representable, then R is strongly PA-
representable. We state the analogous fact for FM representability and weak

FM representability. It follows easily from the known relations between the
classes X9 and AS.

Fact 8 Let R Cw". R and w" — R are weakly FM-representable if and only if
R is FM-representable.

Below, we prove the stronger fact that weakly FM representable relations
are exactly the X9 relations.

Firstly, we consider some properties of coding computations and the for-
mula Comp(e,c) which says that ¢ is a finished computation of the machine
e. (Here and in what follows by a Turing machine we mean a deterministic
Turing machine.) We construct Comp(e,c) using Kleene predicate T(e,z,c),
which means that ¢ is a finished e computation with the input z. It is known
that this predicate is definable by an arithmetical formula with all quantifiers
bounded by ¢. Moreover, if T(e, z, ¢) then e < ¢ and z < ¢. We define Comp(e, ¢)
as 3z < cT(e, z, ).

Now let us state a few facts about the formula Comp(e,c). All quantifiers
in Comp(e, ¢) are bounded c. It follows that the truth value of Comp(e,c) in a
given model M does not depend on the elements in M greater than ¢ and that
Comp(e, ¢) will hold in a given model M € FM(N) as soon as the code of the
computation appears in M.

Now, we state the lemma summarizing these considerations.

Lemma 9. There is a formula Comp(z,y) such that

VeVeVM € FM(N)(card(M) > ¢ =
(¢ is a finished computation of e <= M = Comple, c]))).

Definition 10. By Fin we mean the set of indices of Turing Machines having
finite domains, i. e.

Fin = {e € w: In € w card(W,) = n}.



By a well known result from recursion theory (see e.g. [12]) Fin is X9
complete.

Lemma 11. Fin is weakly FM representable.

Proof. Let ¢(z) be the formula =Comp(z, MAX), where Comp(z,y) is the for-
mula from the last lemma. By properties of Comp stated there, for all e,

e € Fin if and only if g ¢[e].

If e € Fin then there are only finitely many finished computations of e. (Here,
we use the assumption that all machines are deterministic.) In this case ¢ is
true of e in all models in which MAX is greater than the biggest computation
of e. On the other hand, if 4 ¢[e], then there are only finitely many finished
computations of e. Thus, the domain of e is also finite.

Thus, Fin is weakly FM-representable. a

We have the following lemma.

Lemma 12. The family of weakly FM-representable relations is closed on
many one reductions.

Proof. For simplicity we consider only sets A, B C w. Let f : w — w be a
reduction from A to B that is for all z,

z€ Aif and only if f(z) € B

and let pp(x) weakly FM represent B. Additionally, let ¢¢(x,y) FM represent
the graph of f. Now, the following formula @4 (z) FM represents A,

Fy (g, y) AVY < y—s(z,y") A oY)

Here, we need to add the conjunct Vy' < y—ws(x,y’) to force the unigness
of y. ad

As a corollary from Lemmas 11 and 12 we obtain the following characteriza-
tion of weak FM-representability.

Theorem 13. Let R C w". R is weakly FM representable if and only if A is
)

Now, we are in a position to solve some questions which were put, explicitly
or implicitly, in [8]. Let us recall that sl(FM(N)) = {¢ : Eq ¢}. So, sl(FM(N))
is the theory of almost all finite models from FM(N). By the definition of =g
the above set is in X9.

In [8], it was proven by the method of undefinability of truth, that

0’ < deg(sl(FM(N))) < 0".

Here we strengthen this result by the following,



Theorem 14. sI(FM(N)) is X9 complete, so its degree is 0.

Proof. We know that sI(FM(N)) is X9. It is X9 complete by the procedure
from the proof of Lemma 11 which reduces Fin to sI(FM(N)). We put f(e) =
"—Comp(e, MAX)™. By properties of Comp(x,y) we obtain:

e € Fin if and only if f(e) € sl(FM(N)).
Since Fin is X9—complete, sI(FM(N)) is too. O

Let us observe that the degree of sl(FM(N)) does not depend on the underlin-
ing logic provided it has decidable “truth in a finite model” relation and contains
first order logic.

Now, let us consider the complexity of the question whether a given for-
mula o(z1,...,2) with free variables z1,. ..,z FM-represents some relation
in FM(N). Let us define the set

Fpet ={o(x1,...,28) :
Yni...ng €Ew g @n1,...,ng] or Eg g ... ne)}
Fpe: is the set of formulae which are determined for all substitutions of constant
numerical terms for their free variables. In other words, this is the set of formulae

which FM represent some concepts.
We have the following theorem characterizing the degree of Fpe;.

Theorem 15. Fp.; is Hg complete.

Proof. Fpe; has a II{ definition so it is a IT{ relation. Now, let A C w* be a
Hg relation. We show a many one reduction from A to Fpe;.
There is a recursive relation R such that for all nq,...,n; € w,
(n1,...,ng) € A if and only if VeIyVzR(n4,. .., ng, x,y, 2).

k+1

Since Fin is X§ complete, we have a total recursive function g : w — w such

that for all ny,...,n; € w,
VaeIyVzR(n1,...,ng,x,y, z) if and only if Ve g(nq,...,ng, x) € Fin.

Now, let w4(z1,...,zx,2,y) FM-represent the graph of g and let
o(z1,. .., 2k, x) be the following formula

y(g(x1,. .., o6, 2,y) AVz < y=hg(z1, ..., 2k, 2, 2) A "Comp(y, MAX)),

where Comp(z,y) is the formula from Lemma 9. Because we consider only de-
terministic Turing machines Comp(y, MAX) can be determined only negatively.
Thus, for all nq,...,n; € w,

(n1,...,ng) € Aif and only if Vm € w =y p(71, ..., 7k, M)
if and only if (71, ..., 7k, ) € Fpet.

Thus, we obtained a reduction from A to Fpe;. O



4 Statistical Representability

In this section we present another weakening of the original concept of FM-
representabiliy.® Now, we do not require that for all aq,...,as a given formula
correctly describes a given relation R on aq,...,a;r. We only want that the
description is more likely to be correct than incorrect.

Definition 16. Let o(x1,...,xzx) be a formula and a be a valuation in N. By
tn(p,a) we denote

card{A € FM(N) : max;<;<x{a(z;)} < card(A) <n A A E ¢[a]}

Mn(@v a) = " .

By u(yp,a) we denote the limit value of p,, for n — oo, if it exists.
plp,a) = lim pn(p,a).

Since, w(p(x1,...,xK),a) is determined by values a on the free variables of ¢
we write also p(p,ay,...,ar) with the obvious meaning. If ¢ is a sentence then
the value of pu(p,a) does not depend on a. In this case we write pu(p).

Definition 17. The relation R C w" is statistically representable if there is a

formula o(x1,...,z,.) with all free variables among x1,...,x, such that for all
ai,...,ar € W,
— u(p,a1,...,a,) exists,

— if (a1,...,a,) € R then p(p,a1,...,a.) > 1/2
— if (a1,...,a,) € R then p(p,a1,...,a,) < 1/2.

Theorem 18. Let R C w". Then, R is statistically representable if and only if
R is FM-representable.

Proof. The implication from right to left is obvious. To prove the converse let us
assume that R C w" is statistically represented by p(z1,...,z,). We will give a
X9 definition of R. Then, since the set of statistically representable relations is
obviously closed on the complement, we get that R has to be A9. We have the
following: for all ay,...,a, € w,
(a1,...,a;) € R <= HNVnZNun(gp,al,...7ar)>%. *)
The formula on the right side of (*) is X9 so it remains to show that it gives a
good description of R.
If the right side of (*) holds then of course p(p, a1, ..., a,) is greater or equal
%. But, by the definition of statistical representability, u(y,as,...,a,) cannot
be equal to % Thus,

1
w(p,ar, ... a.) > 3 and (a1,...,a,) € R.

® The results contained in this section are based on [13]



On the other hand, if (a1,...,a,) € R then p(p,a1,...,a,) = % + ¢, for some
€ > 0. Now, if we choose N in such a way that for all n > N,

€

|,LL(§O,CL1,...,CLT) —/Ln((p,ﬂbl,...,&r” < 5
then the right side of (*) holds. O
Definition 19. The relation R C w" is weakly statistically representable if there

is a formula p(z1,...,x,) such that for all ay,...,a, € w,
(a1,...,a) € R if and only if the value u(p,ay,...,a,) exists and equals 1.

Since the statistical representability coincides with FM representability one
could expect that relations which are weakly statisticaly representable are ex-
actly relations which are weakly FM representable. On the other hand, the quan-
tifier prefix in the expression u(y) = 1 suggests that these relations are exactly
relations which are IT{ in the arithmetical hierarchy. The second guess is correct.

Before we present the theorem we define some auxiliary notions. We write
VMAX < z for the formula Vz(zz # z). We write Input(c) = n for Je <
c¢T(e,n,c) and € W, for Ic¢T(e, z, ).

Theorem 20. The family of relations which are weakly statistically repre-
sentable is exactly the family of I3 relations in the arithmetical hierarchy.

Proof. By the method from the proof of Lemma 12, It may be easily shown that
the family of weakly statistically representable relations is closed on many one
reductions. Thus, it suffices to show that a Hgfcomplete set is in this family. We
take the II9—complete set colnf of Turing machines with coinfinite domain:

colnf = {e : w\ W, is infinite}.
Now, we write the formula ¢(z) :=

VnVe[{VMAX < ¢ An = Input(c) A Ve (VMAX < ¢; = n < Input(c1))} =
Ve{([(x ¢ WAz <n)Vz=1AVy((y € W, Ay <n) =y <zx)) = (z]MAX)}]

with the property that for all e € w,
e € colnf if and only if u(p,e) = 1. (**)

The formula ¢ in a model on {0,...,m — 1} looks for a computation ¢ greater
than v/m — 1 with the smallest imput n. Then, it takes the greatest x < n which
is not an input of any e computation in the model (or it takes 1 if there is
no such a z) and forces its own density close to 1 — 1/x. If there is no such a
computation ¢ then ¢ is simply true. Now, we show (**).

Let us assume that W, is coinfinite and let £ > 1/k such that k ¢ W,. Let
N = max{c? : Input(c) < k}+1. We show that for all m > N, |1 — (¢, €)| < e.
In the model N,,, there is no computation ¢ such that v/m — 1 < ¢ and Input(c) <
k. Thus, ¢ forces its density at least to 1 — 1/k in models greater than N.

Now, let us assume that W, is cofinite and let & = max(w \ We). Let us fix
arbitrary large N and ¢y = max{c : Input(c) < N}. Starting from N ;1 up to
Nez, ¢ forces its density to 1 — 1/k. In follows that [1 — p.2(p,e)| > 1/2k. O



5

Conclusions

We have investigated some variants and weakenings of the notion of FM
representability. Summarizing we observe that:

1.

2.

The notion of FM-representability has a natural characterization in terms
of arithmetical definability.

It captures in a natural way the idea of a relation which can be in a mean-
ingfull way described in finite but potentially infinite domains.

FM representing formulae can be considered as computing devices finitely
deciding some relations. So the notion of FM-representability behaves simi-
larly to recursive decidability. The main difference is that in the former case
the halting condition — being still finite — cannot be determined in a single
finite model. Let us observe that weak FM representability corresponds in
this sense to recursive enumerability.
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