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2 Institute of Mathematics, Polish Academy of Sciencekz@impan.gov.plAbstract. This work concerns representability of arithmetical notionsin �nite models. It follows the paper by Marcin Mostowski [8], where thenotion of FM�representability has been de�ned. We discuss how far thisnotion captures the methodological idea of representing in�nite sets in�nite but potentially in�nite domains.We consider mainly some weakenings of the notion of FM�representability. We prove that relations weakly FM�representable are ex-actly those being Σ
0

2�de�nable. Another weakening of the notion, namelystatistical representability, turns out to be equivalent to the original one.Additionally, we consider the complexity of sets of formulae naturallyde�ned in �nite models. We state that the set of sentences true in almostall �nite arithmetical models is Σ
0

2�complete and that the set of formulae
FM�representing some relations is Π

0

3�complete.1 IntroductionThis work concerns mainly the following problem.Let us suppose that our world is �nite, but not of a restricted size. Itmeans that everytime it can be enlarged by a �nite number of new entities.This assumption says, in Aristotelian words (see [1], Physics, book 3),that the world is �nite but potentially in�nite. Then, which in�nite setscan be reasonably described in our language?For simplifying the problem we restrict our attention to sets (and relations) ofnatural numbers and we assume that our world contains only natural numbers.Technically, the problem appears when one is trying to transfer some classicalideas into �nite�models theoretic framework. It requires frequently a uniformrepresentation for various in�nite relations in �nite models. As a rule, uniformitymeans that the representation of a relation is given by one formula. Of coursein a single �nite model only a �nite approximation of any in�nite relation canbe de�ned. Therefore we have to consider representability in in�nite classes of�nite models � intuitively �nite but potentially in�nite models.3 In the paper [8]3 In the context of foundations of mathematics a very similar approach to potentialin�tnity is presented by Jan Mycielski in [11].



an attempt to make the notion precise has been made and FM�representabilitytheorem has been proved (see Theorem 5).4Let R be a set of natural numbers. Then we say that R is FM�representedby a formula ϕ(x) if for each initial segment I of natural numbers ϕ(x) cor-rectly describes R for all elements from I in all su�ciently large �nite inter-pretations. Originally the notion was motivated by an attempt to transfer theTarski's method of classifying concepts by means of truth de�nitions to �nitemodels.5 In this case we have to describe syntax of considered languages in �-nite models. Needed syntactical relations are essentially in�nite. Therefore, thenotion of FM�representability appeared as an answer to this problem.In this paper we concentrate on the notion of FM�representability and somepossible weakenings of it. We show that, in a sense, the notion captures stronglythe idea of representing relations in �nite models.2 Basic NotionsWe start with the crucial de�nition of FM�domain.De�nition 1. Let R = {R1, . . . , Rk} be a �nite set of arithmetical relationson ω. By an R�domain we mean the model A = (ω,R1, . . . , Rk). We consider�nite initial segments of these models. Namely, for n ≥ 1, by An we denote thestructure
An = ({0, . . . , n− 1}, Rn

1 , . . . , R
n
k ),where, for i = 1, . . . , k, the relation Rn

i is the restriction of the relation Ri tothe set {0, . . . , n− 1}. We treat n-ary functions as n+ 1-ary relations.The FM�domain of A (or FM�domain of R), denoted by FM(A), is thefamily {An : n ∈ ω}.Throughout this paper we are interested mainly in the family FM(N), for
N = (ω,+,×). By arithmetical formulae we mean �rst order formulae withaddition and multiplication treated as ternary predicates. The standard ordering
x ≤ y is de�nable by the formula ∃z x + z = y. Its strict version, x < y, isde�ned as x ≤ y ∧ x 6= y. The constants 0 and MAX are de�ned respectively as
≤�smallest and ≤�greatest elements. For each n ∈ ω, by n̄ we mean the constantdenoting the n-th element in the ordering ≤ counting from 0. If there is no suchelement we take n̄ = MAX. We write x|y for ∃z ≤ y(1 < z ∧ zx = y). It isknown that all these notions are de�nable by bounded formulae. Thus, theirinterpretations conform to their intended meaning also in models from FM(N).4 Some consequences of this idea are also discussed in [9], [6].5 The basics of the method of truth de�nitions in �nite models were formulated in [7].The paper [8] covers [7], giving additionally some re�nement of the method. It wasapplied then in [9], and [4] for classifying �nite order concepts in �nite models. Someapplications of the method for classifying computational complexity classes can befound in [3].



Let us mention, that in [9] a �nite axiomatization ST has been presentedwhich characterizes, up to isomorphism, the family FM(N) within the class ofall �nite models.The other notions which we use here are fairly standard, one can consulte.g. [2] and [12] for model or recursion theoretic concepts, respectively. We write
{e} to denote the partial function computed by the Turing machine with theindex e. {e}(n)

x

 means that the function {e} is not de�ned on n, and {e}(n)


ymeans that {e}(n) is de�ned. We put We = {n ∈ ω : {e}(n)


y}.We consider the family of Σ0
n (Π0

n) relations which are de�nable in N by Σ0
n(Π0

n) formulae. ∆0
n are relations which are de�nable by Σ0

n and Π0
n formulae.

R ⊆ ωr is many one reducible to S ⊆ ωs (R ≤m S) if there exists a totalrecursive function f such that for all a1, . . . , ar ∈ ω,
(a1, . . . , ar) ∈ R if and only if f(a1, . . . , ar) ∈ S.A relation S is complete for a class K if S ∈ K and for any other R ∈ K, R ≤m S.We say that R is Turing reducible to S (R ≤T S) if there is an oracle Turingmachine which decides R using S as an oracle. R and S are Turing equivalentif R ≤T S and S ≤T R. The degree of R, denoted by deg(R), is the class ofall relations which are Turing equivalent to R. In particular, 0

′ is the degreeof any recursively enumerable (RE) complete set, and 0
′′ is the degree of any

Σ0
2�complete set.We use bald characters, e.g. a, for valuations in a given model A. We write

|A| for the universe of a model A. If ϕ(x1, . . . , xk) is a formula in the vocabularyof A with all free variables between x1, . . . , xk we write A |= ϕ[a1, . . . , ak], for
a1, . . . , ak ∈ |A|, when ϕ holds in A under any valuation a for which a(xi) = ai,for i = 1, . . . , k.De�nition 2. Let ϕ(x1, . . . , xr) be an arithmetical formula and a1, . . . , ar ∈ ω.We say that ϕ is true of a1, . . . , ar in all su�ciently large �nite models ( |=sl

ϕ[a1, . . . , ar]) if and only if ∃k∀n ≥ k Nn |= ϕ[a1, . . . , ar] (or, in other words, if
ϕ is true of a1, . . . , ar in almost all �nite models from FM(N)).For each unbounded family of �nite models K, by sl(K) we denote the set offormulae which are true in almost all models from K. In particular, |=sl ϕ meansthat ϕ ∈ sl(FM(N)).De�nition 3. We say that R ⊆ ωr is FM�represented by a formula
ϕ(x1, . . . , xr) if and only if for each a1, . . . , ar ∈ ω both of the following con-ditions hold:
(i) |=sl ϕ[a1, . . . , ar] if and only if R(a1, . . . , ar).

(ii) |=sl ¬ϕ[a1, . . . , ar] if and only if ¬R(a1, . . . , ar).We say that R is FM�representable if there is an arithmetical formula ϕ which
FM�represents R.The notion of FM�representability has been de�ned in [8] in a slightly dif-ferent way. We summarize various equivalent conditions in the following



Proposition 4. Let R ⊆ ωr and ϕ(x1, . . . , xr) be a formula in a vocabulary of
FM(N). The following conditions are equivalent:1. ϕ(x1, . . . , xr) FM�represents R,2. for each m there is k such that for all a1, . . . , ar ≤ m,

R(a1, . . . , ar) if and only if Ni |= ϕ[a1, . . . , ar],for all i ≥ k.The second condition expresses the intuition that ϕ FM�represents R in FM(N)if each �nite fragment of R is correctly described by ϕ in all su�ciently largemodels from FM(N).The main characterization of the notion of FM�representability is given bythe followingTheorem 5 (FM�representability theorem, see [8]). Let R ⊆ ωr. R is
FM�representable if and only if R is of degree ≤ 0

′ (or, equivalently, is ∆0
2�de�nable).The theorem does not depend on the strength of the underlying logic providedthat the truth relation for this logic restricted to �nite models is recursive andit contains �rst order logic. On the other hand, it is surprising that the theoremrequires relatively weak arithmetical notions. In [5] it is proved that it holds in

FM�domain of multiplication. It is improved in [10] to the divisibility relation.3 Weak FM-representabilityAs the most natural weakening of the notion of the notion of FM�representabilitywe consider the following:De�nition 6. A relation R ⊆ ωr is weakly FM�representable if there is a for-mula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such that for all
a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ A if and only if |=sl ϕ[a1, . . . , ar].Since the de�nition of |=sl ϕ can be expressed as anΣ0
2�sentence the followingholds.Fact 7 Let R ⊆ ωr. If R is weakly FM�representable, then R ∈ Σ0

2 .The reverse of the implication from Fact 7 will be proved after evaluatingthe degree of the theory sl(FM(N)).As an analogue of the relation between FM�representability and weak FM�represetability we recall the relation between strong and weak representabilityin Peano arithmetic. We say that a relation R ⊆ ωr is strongly PA�representable



if there is a PA�formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xrsuch that for all n1, . . . , nr ∈ ω,
(n1, . . . , nr) ∈ R ⇐⇒ PA ` ϕ(n̄1, . . . , n̄r)
(n1, . . . , nr) 6∈ R ⇐⇒ PA ` ¬ϕ(n̄1, . . . , n̄r).

R ⊆ ωr is weakly PA�representable if there is a PA�formula ϕ(x1, . . . , xr)with all free variables among x1, . . . , xr such that for all n1, . . . , nr ∈ ω,
(n1, . . . , nr) ∈ R ⇐⇒ PA ` ϕ(n̄1, . . . , n̄r).A relation R is strongly PA�representable if and only if it is decidable.

R is weakly PA�representable if and only if R is recursively enumerable. If
R and its complement are weakly PA�representable, then R is strongly PA�representable. We state the analogous fact for FM�representability and weak
FM�representability. It follows easily from the known relations between theclasses Σ0

2 and ∆0
2.Fact 8 Let R ⊆ ωr. R and ωr − R are weakly FM�representable if and only if

R is FM�representable.Below, we prove the stronger fact that weakly FM�representable relationsare exactly the Σ0
2 relations.Firstly, we consider some properties of coding computations and the for-mula Comp(e, c) which says that c is a �nished computation of the machine

e. (Here and in what follows by a Turing machine we mean a deterministicTuring machine.) We construct Comp(e, c) using Kleene predicate T(e, x, c),which means that c is a �nished e�computation with the input x. It is knownthat this predicate is de�nable by an arithmetical formula with all quanti�ersbounded by c. Moreover, if T(e, x, c) then e < c and x < c. We de�ne Comp(e, c)as ∃x < cT(e, x, c).Now let us state a few facts about the formula Comp(e, c). All quanti�ersin Comp(e, c) are bounded c. It follows that the truth value of Comp(e, c) in agiven model M does not depend on the elements in M greater than c and that
Comp(e, c) will hold in a given model M ∈ FM(N) as soon as the code of thecomputation appears in M .Now, we state the lemma summarizing these considerations.Lemma 9. There is a formula Comp(x, y) such that

∀e ∀c ∀M ∈ FM(N)(card(M) > c⇒
(c is a �nished computation of e ⇐⇒ M |= Comp[e, c]))).De�nition 10. By Fin we mean the set of indices of Turing Machines having�nite domains, i. e.

Fin = {e ∈ ω : ∃n ∈ ω card(We) = n}.



By a well known result from recursion theory (see e.g. [12]) Fin is Σ0
2�complete.Lemma 11. Fin is weakly FM�representable.Proof. Let ϕ(x) be the formula ¬Comp(x,MAX), where Comp(x, y) is the for-mula from the last lemma. By properties of Comp stated there, for all e,

e ∈ Fin if and only if |=sl ϕ[e].If e ∈ Fin then there are only �nitely many �nished computations of e. (Here,we use the assumption that all machines are deterministic.) In this case ϕ istrue of e in all models in which MAX is greater than the biggest computationof e. On the other hand, if |=sl ϕ[e], then there are only �nitely many �nishedcomputations of e. Thus, the domain of e is also �nite.Thus, Fin is weakly FM�representable. utWe have the following lemma.Lemma 12. The family of weakly FM�representable relations is closed onmany�one reductions.Proof. For simplicity we consider only sets A,B ⊆ ω. Let f : ω −→ ω be areduction from A to B that is for all z,
z ∈ A if and only if f(z) ∈ Band let ϕB(x) weakly FM�represent B. Additionally, let ψf (x, y) FM�representthe graph of f . Now, the following formula ϕA(x) FM�represents A,

∃y (ψf (x, y) ∧ ∀y′ < y¬ψf (x, y′) ∧ ϕB(y)).Here, we need to add the conjunct ∀y′ < y¬ψf (x, y′) to force the uniqnessof y. utAs a corollary from Lemmas 11 and 12 we obtain the following characteriza-tion of weak FM�representability.Theorem 13. Let R ⊆ ωr. R is weakly FM�representable if and only if A is
Σ0

2 .Now, we are in a position to solve some questions which were put, explicitlyor implicitly, in [8]. Let us recall that sl(FM(N)) = {ϕ : |=sl ϕ}. So, sl(FM(N))is the theory of almost all �nite models from FM(N). By the de�nition of |=slthe above set is in Σ0
2 .In [8], it was proven by the method of unde�nability of truth, that

0
′ < deg(sl(FM(N))) ≤ 0

′′.Here we strengthen this result by the following,



Theorem 14. sl(FM(N)) is Σ0
2�complete, so its degree is 0

′′.Proof. We know that sl(FM(N)) is Σ0
2 . It is Σ0

2�complete by the procedurefrom the proof of Lemma 11 which reduces Fin to sl(FM(N)). We put f(e) =
p¬Comp(ē,MAX)q. By properties of Comp(x, y) we obtain:

e ∈ Fin if and only if f(e) ∈ sl(FM(N)).Since Fin is Σ0
2�complete, sl(FM(N)) is too. utLet us observe that the degree of sl(FM(N)) does not depend on the underlin-ing logic provided it has decidable �truth in a �nite model � relation and contains�rst order logic.Now, let us consider the complexity of the question whether a given for-mula ϕ(x1, . . . , xk) with free variables x1, . . . , xk FM�represents some relationin FM(N). Let us de�ne the set

FDet = {ϕ(x1, . . . , xk) :

∀n1 . . . nk ∈ ω |=sl ϕ[n1, . . . , nk] or |=sl ¬ϕ[n1, . . . , nk]}.

FDet is the set of formulae which are determined for all substitutions of constantnumerical terms for their free variables. In other words, this is the set of formulaewhich FM�represent some concepts.We have the following theorem characterizing the degree of FDet.Theorem 15. FDet is Π0
3�complete.Proof. FDet has a Π0

3 de�nition so it is a Π0
3 relation. Now, let A ⊆ ωk be a

Π0
3�relation. We show a many�one reduction from A to FDet.There is a recursive relation R such that for all n1, . . . , nk ∈ ω,

(n1, . . . , nk) ∈ A if and only if ∀x∃y∀zR(n1, . . . , nk, x, y, z).Since Fin is Σ0
2�complete, we have a total recursive function g : ωk+1 −→ ω suchthat for all n1, . . . , nk ∈ ω,

∀x∃y∀zR(n1, . . . , nk, x, y, z) if and only if ∀x g(n1, . . . , nk, x) ∈ Fin.Now, let ψg(x1, . . . , xk, x, y) FM�represent the graph of g and let
ϕ(x1, . . . , xk, x) be the following formula

∃y(ψg(x1, . . . , xk, x, y) ∧ ∀z < y¬ψg(x1, . . . , xk, x, z) ∧ ¬Comp(y,MAX)),where Comp(x, y) is the formula from Lemma 9. Because we consider only de-terministic Turing machines Comp(y,MAX) can be determined only negatively.Thus, for all n1, . . . , nk ∈ ω,
(n1, . . . , nk) ∈ A if and only if ∀m ∈ ω |=sl ϕ(n̄1, . . . , n̄k, m̄)if and only if ϕ(n̄1, . . . , n̄k, x) ∈ FDet.Thus, we obtained a reduction from A to FDet. ut



4 Statistical RepresentabilityIn this section we present another weakening of the original concept of FM�representabiliy.6 Now, we do not require that for all a1, . . . , ak a given formulacorrectly describes a given relation R on a1, . . . , ak. We only want that thedescription is more likely to be correct than incorrect.De�nition 16. Let ϕ(x1, . . . , xk) be a formula and a be a valuation in N. By
µn(ϕ, a) we denote
µn(ϕ, a) =

card{A ∈ FM(N) : max1≤i≤k{a(xi)} ≤ card(A) ≤ n ∧A |= ϕ[a]}
n

.By µ(ϕ, a) we denote the limit value of µn for n→ ∞, if it exists.
µ(ϕ, a) = lim

n→∞
µn(ϕ, a).Since, µ(ϕ(x1, . . . , xk),a) is determined by values a on the free variables of ϕwe write also µ(ϕ, a1, . . . , ak) with the obvious meaning. If ϕ is a sentence thenthe value of µ(ϕ, a) does not depend on a. In this case we write µ(ϕ).De�nition 17. The relation R ⊆ ωr is statistically representable if there is aformula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such that for all

a1, . . . , ar ∈ ω,� µ(ϕ, a1, . . . , ar) exists,� if (a1, . . . , ar) ∈ R then µ(ϕ, a1, . . . , ar) > 1/2� if (a1, . . . , ar) 6∈ R then µ(ϕ, a1, . . . , ar) < 1/2.Theorem 18. Let R ⊆ ωr. Then, R is statistically representable if and only if
R is FM�representable.Proof. The implication from right to left is obvious. To prove the converse let usassume that R ⊆ ωr is statistically represented by ϕ(x1, . . . , xr). We will give a
Σ0

2 de�nition of R. Then, since the set of statistically representable relations isobviously closed on the complement, we get that R has to be ∆0
2. We have thefollowing: for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R ⇐⇒ ∃N∀n ≥ Nµn(ϕ, a1, . . . , ar) >
1

2
. (*)The formula on the right side of (*) is Σ0

2 so it remains to show that it gives agood description of R.If the right side of (*) holds then of course µ(ϕ, a1, . . . , ar) is greater or equal
1

2
. But, by the de�nition of statistical representability, µ(ϕ, a1, . . . , ar) cannotbe equal to 1

2
. Thus,

µ(ϕ, a1, . . . , ar) >
1

2
and (a1, . . . , ar) ∈ R.6 The results contained in this section are based on [13]



On the other hand, if (a1, . . . , ar) ∈ R then µ(ϕ, a1, . . . , ar) = 1

2
+ ε, for some

ε > 0. Now, if we choose N in such a way that for all n ≥ N ,
|µ(ϕ, a1, . . . , ar) − µn(ϕ, a1, . . . , ar)| <

ε

2then the right side of (*) holds. utDe�nition 19. The relation R ⊆ ωr is weakly statistically representable if thereis a formula ϕ(x1, . . . , xr) such that for all a1, . . . , ar ∈ ω,
(a1, . . . , ar) ∈ R if and only if the value µ(ϕ, a1, . . . , ar) exists and equals 1.Since the statistical representability coincides with FM�representability onecould expect that relations which are weakly statisticaly representable are ex-actly relations which are weakly FM�representable. On the other hand, the quan-ti�er pre�x in the expression µ(ϕ) = 1 suggests that these relations are exactlyrelations which are Π0

3 in the arithmetical hierarchy. The second guess is correct.Before we present the theorem we de�ne some auxiliary notions. We write√
MAX < x for the formula ∀z(xx 6= z). We write Input(c) = n for ∃e <

cT(e, n, c) and x ∈ We for ∃c T (e, x, c).Theorem 20. The family of relations which are weakly statistically repre-sentable is exactly the family of Π0
3 relations in the arithmetical hierarchy.Proof. By the method from the proof of Lemma 12, It may be easily shown thatthe family of weakly statistically representable relations is closed on many onereductions. Thus, it su�ces to show that a Π0

3�complete set is in this family. Wetake the Π0
3�complete set coInf of Turing machines with coin�nite domain:coInf = {e : ω \We is in�nite}.Now, we write the formula ϕ(z) :=

∀n∀c[{
√

MAX < c ∧ n = Input(c) ∧ ∀c1(
√

MAX < c1 ⇒ n ≤ Input(c1))} ⇒
∀x{([(x 6∈ Wz ∧ x < n) ∨ x = 1] ∧ ∀y((y 6∈ Wz ∧ y < n) ⇒ y ≤ x)) ⇒ ¬(x|MAX)}]with the property that for all e ∈ ω,

e ∈ coInf if and only if µ(ϕ, e) = 1. (**)The formula ϕ in a model on {0, . . . ,m− 1} looks for a computation c greaterthan √
m− 1 with the smallest imput n. Then, it takes the greatest x < n whichis not an input of any e�computation in the model (or it takes 1 if there isno such a x) and forces its own density close to 1 − 1/x. If there is no such acomputation c then ϕ is simply true. Now, we show (**).Let us assume that We is coin�nite and let ε > 1/k such that k 6∈ We. Let

N = max{c2 : Input(c) ≤ k}+1. We show that for allm > N , |1−µm(ϕ, e)| < ε.In the model Nm there is no computation c such that√m− 1 < c and Input(c) <
k. Thus, ϕ forces its density at least to 1 − 1/k in models greater than N .Now, let us assume that We is co�nite and let k = max(ω \We). Let us �xarbitrary large N and c0 = max{c : Input(c) ≤ N}. Starting from Nc0+1 up to
Nc2

0

, ϕ forces its density to 1 − 1/k. In follows that |1 − µc2

0

(ϕ, e)| ≥ 1/2k. ut



5 ConclusionsWe have investigated some variants and weakenings of the notion of FM�representability. Summarizing we observe that:1. The notion of FM�representability has a natural characterization in termsof arithmetical de�nability.2. It captures in a natural way the idea of a relation which can be in a mean-ingfull way described in �nite but potentially in�nite domains.3. FM�representing formulae can be considered as computing devices �nitelydeciding some relations. So the notion of FM�representability behaves simi-larly to recursive decidability. The main di�erence is that in the former casethe halting condition � being still �nite � cannot be determined in a single�nite model. Let us observe that weak FM�representability corresponds � inthis sense � to recursive enumerability.References1. Aristotle. Physics. The Internet Classics Archive, written 350B.C. translated by R. P. Hardie and R. K. Gaye. available at:http://classics.mit.edu/Aristotle/physics.html.2. H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer�Verlag, 1995.3. L. Koªodziejczyk. A �nite model-theoretical proof of a property of bounded queryclasses within PH. The Journal of Symbolic Logic, 69:1105�1116, 2004.4. L. Koªodziejczyk. Truth de�nitions in �nite models. The Journal of SymbolicLogic, 69:183�200, 2004.5. M. Krynicki and K. Zdanowski. Theories of arithmetics in �nite models. Journalof Symbolic Logic, 70(1):1�28, 2005.6. M. Mostowski. Potential in�nity and the Church Thesis. in manuscript, see also anextended abstract in the electronic proceedings of Denis Richard 60-th BirthdayConference, Clermont�Rerrand, 2000.7. M. Mostowski. Truth de�nitions in �nite models. in manuscript, 1993.8. M. Mostowski. On representing concepts in �nite models. Mathematical LogicQuarterly, 47:513�523, 2001.9. M. Mostowski. On representing semantics in �nite models. In A. Rojszczak†,J. Cachro, and G. Kurczewski, editors, Philosophical Dimensions of Logic andScience, pages 15�28. Kluwer Academic Publishers, 2003.10. M. Mostowski and A. Wasilewska. Arithmetic of divisibility in �nite models. Math-ematical Logic Quarterly, 50(2):169�174, 2004.11. J. Mycielski. Analysis without actual in�nity. Journal of Symbolic Logic, 46:625�633, 1981.12. R. I. Soare. Recursively enumerable sets and degrees. Perspectives in MathematicalLogic. Springer, 1987.13. Konrad Zdanowski. Arithmetics in �nite but potentially in�nite worlds. PhD thesis,Warsaw University, 2005. in preparation.


