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Abstract. We investigate theories of initial segments of the standard models for arith-

metics. It is easy to see that if the ordering relation is definable in the standard model

then the decidability results can be transferred from the infinite model into the finite

models. On the contrary we show that the Σ2–theory of multiplication is undecidable

in finite models. We show that this result is optimal by proving that the Σ1–theory of

multiplication and order is decidable in finite models as well as in the standard model.

We show also that the exponentiation function is definable in finite models by a formula

of arithmetic with multiplication and that one can define in finite models the arithmetic

of addition and multiplication with the concatenation operation.

We consider also the spectrum problem. We show that the spectrum of arithmetic with

multiplication and arithmetic with exponentiation is strictly contained in the spectrum of

arithmetic with addition and multiplication.

§1. Introduction. The world which is physically accessible for us is of a
finite character. Even if our world is infinite we can experience only its finite
fragments. The finite context occurs for example when we do a simple arithmetic
of addition. To illustrate this let us try to add, using computer, two Fibonacci
numbers: F44 = 1 134 903 170 and F45 = 1 836 311 903. The result obtained by
one of the authors was F46 = −1 323 752 223. This result was obtained using
the programming language C and the arithmetic on variables of type int. This
overflow shows that our computer arithmetic is not the arithmetic of the standard
model. Here we have only as many natural numbers, as the size of registers in
our machine allows.

Our experience shows that infinite objects investigated in classical mathemat-
ics are only abstracts, which we do not meet in everyday live. Moreover, we can
determine their properties only using finite proofs. Therefore, it is natural to
think that to give a good description of our work we should concentrate on finite
objects.

In our paper we investigate theories of finite initial segments of the standard
model of arithmetic with various sets of primitive notions. Models under con-
siderations have always finite universe but their cardinality is not bounded. One
may say they are potentially infinite. In [13], Marcin Mostowski defined the
concept of being true in sufficiently large finite models which is one of the basic
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notions of our paper. In [14] he applied his idea to transform the classical results
on nondefinability of truth to the context of finite models.

A similar idea was considered by Mycielski [17] (see also [18]). He showed how
to reconstruct the analysis within the framework of the family of potentially
infinite models. Although his results show how infinite objects can approximate
the properties of the finite world, we show something opposite. Namely we show
that some logical properties, as for example decidability or definability, are not
preserved in finite structures.

In [21] Schweikardt considered theories of finite models of arithmetics. Some
problems considered in [21] are complementary to the problems in our paper.
Her definition of finite models for arithmetic is also slightly different than ours.

In the second section of the paper we introduce necessary notations and de-
finitions. In the next section we show that some decidability results can be
transferred from the standard infinite model to the finite models case. The main
results of the fourth part are undecidability of the Σ2–theory of arithmetic with
multiplication and definability of exponentiation from multiplication in finite
models. Here we prove also the undecidability of Σ2–theory of arithmetic with
exponentiation. In the fifth part we prove the optimality of the result in the
fourth section. Namely, we prove that the Σ1–theory of multiplication with or-
dering is decidable. In the next section we show that concatenation without
ordering defines full arithmetic in finite models. The seventh section is devoted
to the spectrum problem. Here we give a characterization of spectra of arith-
metics with multiplication and exponentiation and describe their relation with
the spectrum of full arithmetic.
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particular his observation was the crucial argument in the proof of theorem 4.3.
We want to thank also the members of Daniel Leivant’s and Clemens Laute-
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preparation of the paper. Finally, we specially thank to anonymous reviewer for
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paper.

§2. Basic definitions. In this section we fix the notation and introduce the
main concepts. We assume some background in a model theory and recursion
theory. Any introductory textbooks, e.g. [8] and [23] should be sufficient.

By N we denote the set of natural numbers. By n̄ we denote the numeral
n. By card(X) we denote the cardinality of X and by card(A), where A is
a model, we denote the cardinality of the universe of A. By bac and dae we
denote the greatest integer ≤ a and the smallest integer ≥ a, respectively. A
logarithm without explicit base is always the logarithm with base 2. We use also
a shorthand ∃=1 for the quantifier “there exists exactly one element”.

In this paper we will consider formulas of the first order logic. By Σn we
denote the set of formulas of a given vocabulary which begin with a block of
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existential quantifiers and have n − 1 alternations followed by a quantifier free
formula. Similarly, ϕ is in Πn if it begins with a block of universal quantifiers
and has n − 1 alternations followed by a quantifier free formula. We consider
also the family of the bounded formulas denoted by ∆0. A formula is bounded if
all quantifiers occurring in it are of the form (Qx ≤ t), where Q ∈ {∃, ∀} and t is
a term. Observe that according to our notation Σ0 as well as Π0 is not the same
as ∆0. For a vocabulary θ by Σn(θ) and ∆0(θ) we denote the set of Σn-formulas
and ∆0-formulas of the signature θ. For a set of formulas F , by Bool(F) we
denote the set of all boolean combinations of formulas from F .

By Σ0
n and Π0

n we will denote the classes of relations in arithmetical hierarchy.
A set is ∆0

n if it is Σ0
n and Π0

n. A set R is Σ0
n–hard if each set from Σ0

n is many–
one reducible to R. A set R is Σ0

n–complete if it is Σ0
n–hard and it belongs to

Σ0
n. For details of the above notions see [23].
For a given vocabulary σ we write Fσ to denote the set of first order formulas

in this vocabulary. Similarly, if X is a set of predicates and functions (of known
arities) we write FX to denote the set of first order formulas with predicates and
functions from X . E.g. F{+} is the set of formulas with addition. Moreover, we
always assume to have equality in our language.

In what follows, with each predicate we connect its intended meaning e.g. +
with addition, × with multiplication, etc. Therefore, we will not distinguish
between the signature of the language (vocabulary) and relations in a model.
The latter will be always either well known arithmetical relations or its finite
models versions.

The rank of a formula ϕ, rk(ϕ), is defined in a usual way, i.e. rk(ϕ) = 0
if ϕ is atomic formula, rk(¬ϕ) = rk(ϕ), rk(ϕ ∧ ψ) = max{rk(ϕ), rk(ψ)}, and
rk(∃xϕ) = 1 + rk(ϕ).

By a rank of a term t, rk(t) we mean a number of occurrences of function
symbols in t. We call a term t simple if rk(t) ≤ 1. A formula ψ is simple if
all terms in ψ are simple. Of course, each formula is effectively equivalent to a
simple formula.

Let A be a model having as a universe the set of natural numbers, i.e. A =
(N, R1, . . . , Rs, f1, . . . , ft, a1, . . . , ar), where R1, . . . , Rs are relations on N,
f1, . . . , ft are operations (not necessarily unary) on N and a1, . . . , ar ∈ N. We
will consider finite initial fragments of these models. Namely, for n ∈ N, by An

we denote the following structure

An = ({0, . . . , n}, Rn
1 , . . . , R

n
s , f

n
1 , . . . , f

n
t , a

n
1 , . . . , a

n
r , n),

where Rn
i is the restriction of Ri to the set {0, . . . , n}, fn

i is defined as

fn
i (b1, . . . , bni

) =

{

fi(b1, . . . , bni
) if f(b1, . . . , bni

) ≤ n
n if f(b1, . . . , bni

) > n

and an
i = ai if ai ≤ n, otherwise an

i = n. We will denote the family {An}n∈N

by FM (A).
The signature of An is an extension of the signature of A by one constant.

This constant will be denoted by MAX . We introduced it mainly for convenience
reasons. In all theories we consider it will be definable.
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Let ϕ(x1, . . . , xp) be a formula and b1, . . . , bp ∈ N. We say that ϕ is satisfied
by b1, . . . , bp in all finite models of FM (A) (FM (A) |= ϕ[b1, . . . , bp]) if for all
n ≥ max(b1, . . . , bp) An |= ϕ[b1, . . . , bp].

We say that ϕ is satisfied by b1, . . . , bp in all sufficiently large finite models
of FM (A), what is denoted by FM (A) |=sl ϕ[b1, . . . , bp], if there is k ∈ N such
that for all n ≥ k An |= ϕ[b1, . . . , bp].

When no ambiguity arises we will use |=sl ϕ[b1, . . . , bp] instead of FM (A) |=sl

ϕ[b1, . . . , bp].
Finally, a sentence ϕ is true in all finite models of FM (A) if An |= ϕ for all

n ∈ N. Similarly, a sentence ϕ is true in all sufficiently large finite models of
FM (A) if there is k ∈ N such that for all n ≥ k, An |= ϕ.

Let F be a set of sentences of first order logic. By ThF(A), where A is a
model, we denote the set of all sentences from F true in A. For a class of models
K, by ThF(K) we denote the set of sentences from F true in all models from K,
that is ThF(K) =

⋂

A∈K ThF(A).
By slF(FM (A)) we denote the set of sentences from F true in all sufficiently

large finite models of FM (A). So, we have

ThF(FM (A)) = {ϕ ∈ F : ∀n ∈ N An |= ϕ},

slF (FM (A)) = {ϕ ∈ F : ∃k∀n ≥ k An |= ϕ}.
When F is the set of all sentences of a given signature we will omit the subscript
F .

Our aim is to investigate the complexity of ThF(FM (A)) and slF(FM (A)) for
different models A and some special sets of sentences F . We will also examine
the representability problems for families of the form FM (A).

The idea how to represent the relations on N in finite models was formulated
in the article of Marcin Mostowski [13]. He defined there the notion of FM -
representability. Relation R ⊆ Nr is FM –representable in FM (A) if and only
if there exists a formula ϕ(x1, . . . , xr) such that for all a1, . . . , ar ∈ N,

(a1, . . . , ar) ∈ R if and only if FM (A) |=sl ϕ[a1, . . . , ar]

and

(a1, . . . , ar) 6∈ R if and only if FM (A) |=sl ¬ϕ[a1, . . . , ar].

For the theory of finite models of arithmetic with addition and multiplication
we have the following theorem.

Theorem 2.1 ([13]). Let A be the standard model of arithmetic with addition
and multiplication. Relation R ⊆ Nr is FM–representable in FM (A) if and
only if R is in ∆0

2.

One can characterize the relations in ∆0
2 as those which are decidable by a

Turing machine with recursively enumerable oracle (see e.g. [23]).
Later, Mostowski and Zdanowski in [16] proved that for the standard model

of arithmetic (N,+,×) the set sl(FM ((N,+,×))) is Σ0
2–complete. We will show

the same for arithmetic with multiplication only.
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§3. Decidable theories of finite arithmetics. As we mentioned each con-
sidered infinite structure A has as a universe the set of natural numbers. So,
(A, <) denotes the structure A extended by the usual ordering on N. We start
with the following general fact.

Lemma 3.1. For every formula ϕ(x1, . . . , xk) of the language of FM (A) there
is a formula ϕ∗(x1, . . . , xk, y) of the language of (A, <), where y is a new va-
riable, such that for each n ∈ N and a1, . . . , ak ≤ n,

An |= ϕ[a1, . . . , ak] if and only if (A, <) |= ϕ∗[a1, . . . , ak, n].

Moreover, ϕ∗ is a ∆0–formula.

Proof. A translation procedure is defined by the induction on the complexity
of ϕ. First we replace each occurrence of MAX in ϕ by a variable which does not
occur in ϕ, say y. Then, let f be a function in the structure A. We define in A
the graph of the corresponding function from a finite structure by the following
formula: (F (x1, . . . , xk) = x0 ∧ x0 ≤ y) ∨ (F (x1, . . . , xk) ≥ y ∧ x0 = y). In a
similar way we define relations from a finite structure. This gives us the starting
point of the translation procedure. The rest of this procedure is standard. a

Let ∀∆0 (∃∀∆0) denote the set of sentences of the form ∀xϕ (∃x∀yϕ), where
ϕ is a ∆0 formula. From the last lemma we can conclude the following

Proposition 3.2. a) If Th∀∆0((A, <)) is decidable then Th(FM (A)) is de-
cidable.

b) If Th∃∀∆0((A, <)) is decidable then sl(FM (A)) is decidable.

Proof. It follows immediately from the lemma 3.1 that for arbitrary sentence
ϕ of the language FM (A) we have:

for all n ∈ N , An |= ϕ if and only if (A, <) |= ∀yϕ∗,

where ϕ∗ is a formula from lemma 3.1.
Similarly,

|=sl ϕ[a1, . . . , an] if and only if (A, <) |= ∃z∀y > zϕ∗[a1, . . . , an].

Therefore, the decidability of Th(FM (A)) and sl(FM (A)) follows from the
decidability of Th∀∆0((A, <)) and of Th∃∀∆0((A, <)), respectively. a

As a corollary we obtain the following

Corollary 3.3. Assume that Th((A, <)) is decidable. Then Th(FM (A))
and sl(FM (A)) are decidable.

From the lemma 3.1 follows also the following observation.

Proposition 3.4. a) Every relation FM–representable in FM (A) is definable
in (A, <).
b) If Th((A, <)) is decidable then each FM–representable relation in FM (A)

is recursive.
c) If the standard ordering is definable in A and Th(A) admits elimination of

quantifiers then sl(FM (A)) also admits elimination of quantifiers.
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In the proof of the point c) we use the fact that for each quantifier free formula
ϕ(x̄) and for each tuple ā the following equivalence holds:

FM (A) |=sl ϕ[ā] if and only if A |= ϕ[ā].

Well known classical results allow to deduce from corollary 3.3 that theories
Th(FM ((N,+))), sl(FM ((N,+))) are decidable. By the same way, using the
result of Semenov in [22], we can deduce that for an arbitrary natural number
n theories Th(FM ((N,+, nx))) and sl(FM ((N,+))) are decidable. Also results
contained in [5], [22], [11] and [4] provide a large set of examples of theories of
arithmetics decidable in finite models.

§4. Undecidable theories of arithmetic in finite models. In the present
section we are going to describe the properties of a theory which has greater ex-
pressive power in finite models than in the standard case. We focus our attention
to arithmetic with multiplication. Later we show that, contrary to the standard
case, the exponentiation function (i.e. function exp(x, y) = xy) is definable in
finite models from multiplication.1

Let us observe that in a finite model for arithmetic of multiplication the for-
mula ∀z(xz = x) defines zero and the formula x 6= 0∧∀z 6= 0(xz = x) defines the
maximal element (assuming that a model has at least 3 elements). Similarly we
can define zero and the maximal element in arithmetic with exponentiation by
formulas exp(x, x) 6= x ∧ ∀z 6= x(exp(x, z) = x) and x 6= 0 ∧ ∀z 6= 0(exp(x, z) =
x) ∧ exp(x, 0) 6= x (in the latter case assuming that a model has at least 3
elements).

Now our basic structures, everywhere denoted by A or B, will be the standard
model for arithmetic with addition and multiplication (N,+,×), the standard
model for arithmetic with multiplication, (N,×), or the model with the expo-
nentiation function, (N, exp). It will be always clear which one is considered.

First let us present the formula with multiplication defining the ordering re-
lation on an initial segment of a given model An ∈ FM ((N,×)). It has the
form

ϕ<(x, y) := ∃z (zx 6= MAX ∧ zy = MAX).

We shall prove that the relation defined in this way is the standard ordering
relation on an initial segment of the model An. Moreover, we can define in the
uniform way an initial segment of the structure An on which ϕ< defines the
usual ordering.

Lemma 4.1. Let a, b ∈ |An| be such that a2, b2 < n. Then, An |= ϕ<[a, b] if
and only if a < b.

Proof. The implication from left to right is obvious. For the converse let us
assume that a < b. Thus we can choose k ∈ |An| to be the smallest element of
An such that kb ≥ n. Since b2 < n, k must be greater than b. It follows that
n > (k − 1)b = (kb − b) > (kb − k) = k(b − 1) ≥ ka. Therefore An |= ∃z(zb =
MAX ∧ za 6= MAX). a

1We assume the convention that exp(0, 0) = 1.
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It follows that the formula xx 6= MAX defines an initial segment of An in
which the formula ϕ<(x, y) defines the standard ordering.

From lemma 4.1 we get also the following

Fact 4.2. For each a, b ∈ N, a < b if and only if |=sl ϕ<[a, b].

Now, we are going to show that the theory of sufficiently large finite models for
multiplication has the same expressive power in sufficiently large finite models
as arithmetic with addition and multiplication. For this aim we will present
an interpretation of a model of cardinality n for addition and multiplication in
models for multiplication only of cardinalities between (n− 1)2 + 1 and n2.

Theorem 4.3. For each formula ϕ(x1, . . . , xk) ∈ F{+,×}, there is a formula
ψ(x1, . . . , xk) ∈ F{×} with the same free variables as in ϕ(x1, . . . , xk) such that
for each a1, . . . , ak ∈ N,

|=sl ϕ[a1, . . . , ak] if and only if |=sl ψ[a1, . . . , ak].

Proof. To prove the theorem we need the following lemma.

Lemma 4.4. Let A = (N,+,×) and B = (N,×). There are formulas ϕU (x),
ϕ+(x, y, z), ϕ×(x, y, z), ϕ0(x) and ϕMAX(x) in the language of arithmetic with
multiplication which define in a model Br the model isomorphic to a model An,
whenever n ≥ 1 and r are such that (n − 1)2 + 1 ≤ r ≤ n2. Moreover, the

isomorphism function f : |An| −→ |Br| is as follows f(a) =

{

a if a < n
r if a = n.

Proof of lemma 4.4. We will construct the formulas from the lemma. As
a formula ϕU (x) defining the universe of the model we take x2 6= MAX ∨ x =
MAX . The form of the isomorphism function forces us to take for ϕ0(x) and
ϕMAX(x) the formulas x = 0 and x = MAX . For the formula ϕ×(x, y, z) we
take (xy = z ∧ z2 6= MAX) ∨ ((xy)2 = MAX ∧ z = MAX). Finally, we use
results of Troy Lee from [12] stating that addition is definable in finite structures
with multiplication and ordering. So, to write ϕ+(x, y, z) we take the appropriate
formula from [12] defining addition from multiplication and ordering. a

A straightforward consequence of the lemma 4.4 is the following.

Lemma 4.5. Let A = (N,+,×) and B = (N,×). For each formula ϕ(x) ∈
F{+,×}, there is a formula ψ(x) ∈ F{×} with the same free variables as ϕ(x),
i.e. x = (x1, . . . , xk) such that for each a1, . . . , ak ∈ N, and for each n, r such
that max{a1, . . . , ak} < n and (n− 1)2 + 1 ≤ r ≤ n2

An |= ϕ[a1, . . . , ak] if and only if Br |= ψ[a1, . . . , ak].

Now, to prove the theorem 4.3 it suffices to take as ψ the formula from the
lemma 4.5. a

As a consequence of the above results and the undecidability result from [13]
we have that sl((N,×)) is undecidable. In what follows we are going to estimate
n such that Σn theory of multiplication in finite models is undecidable.

Firstly, let us observe that for a model Bn ∈ FM (B), where B = (N,×), we
can define the ordering relation on {0, . . . , b

√
n− 1c} – segment of Bn by a Σ1
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as well as by a Π1 formula. The Σ1 formula ∃z(xz 6= MAX ∧ yz = MAX) was
given before. The corresponding Π1 formula has the form

∀z(xz = MAX ⇒ yz = MAX) ∧ x 6= y.

We have the fact analogous to lemma 4.1

Lemma 4.6. Let A = (N,×) and let a, b ∈ |An| be such that a2, b2 < n. Then,
An |= ∀z(xz = MAX ⇒ yz = MAX ∧ x 6= y)[a, b] if and only if a < b.

The proof of the last lemma is similar to the proof of lemma 4.1.

Therefore, if the conditions a2, b2 < MAX are satisfied we may freely choose
a Σ1 or Π1 formula to express the fact that a < b. In what follows we will write
ϕ<(x, y) with the assumption that it has a Σ1 or Π1 form depending on what
we need.

Now, let us consider a formula stating that y is the successor of x in the
standard ordering of {0, . . . , b

√
n− 1c}. It has the form

ϕS(x, y) := ϕ<(x, y) ∧ ∀z(ϕ<(x, z) ∧ z 6= y ⇒ ϕ<(y, z)).

Using the Π1 and Σ1 forms of the formula ϕ< we can write ϕS as a Π1 formula.
We have the following

Theorem 4.7. a) The set of Σ2 sentences of arithmetic of multiplication
which are satisfiable in finite models is Σ0

1–complete.
b) The set of Σ2 sentences of arithmetic of multiplication which are true in all

sufficiently large finite models is Σ0
1–hard.

Proof. First, let us remind the Tarski’s identity. For each natural numbers
x, y and z 6= 0

x+ y = z if and only if (xz + 1)(yz + 1) = z2(xy + 1) + 1.

It follows that we can define addition in arithmetic with multiplication and
successor function by a Σ1 as well as by a Π1 formula.

Let D be the set of sentences of the form ∃x̄(f(x̄) = g(x̄)) where f, g are
polynomials with coefficients in N.

By MDRP (Matijasevič, Davis, Robinson, Putnam) theorem, see [6], the prob-
lem whether a given ϕ ∈ D is true in the standard model is Σ0

1–complete. We
will give the reduction of this problem to the problems mentioned in the theorem.

Let ϕ ∈ D. We can construct a sentence ∃y1 . . . ykψ such that it is equivalent to
ϕ in the standard model of arithmetic and ψ is a conjunction of atomic formulas
of the form: wiwj = wl, S(wi) = wj or wi = wj , where wi, wj , wl are variables
or the constant 0. Such construction is possible by Tarski’s identity and some
logical transformations.

Now, when we replace subformulas of ψ of the form S(x) = y with ϕS(x, y)
we get γ ∈ Π1 in the language of FM ((N,×)) such that the following statements
are equivalent:

(i) (N,×, S) |= ∃y1 . . . ykψ,
(ii) FM ((N,×)) |=sl ∃y1, . . . , yk(

∧

i≤k y
2
i 6= MAX ∧ γ),

(iii) ∃y1, . . . , yk(
∧

i≤k y
2
i 6= MAX ∧ γ) is satisfiable in FM ((N,×)).
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It suffices to prove only the implication from (i) to (ii) and from (iii) to (i).
If (i) holds and a1, . . . , ak are witnesses for ψ then in each model An, where

n > (maxi≤kai)
2, the same sequence will witness for ∃y1, . . . , yk(

∧

i≤k y
2
i 6=

MAX ∧ γ).
Similarly, if (iii) holds with a1, . . . , ak as witnesses for y1, . . . , yk then the

condition
∧

i≤k y
2
i 6= MAX assures that a1, . . . , ak are also good witnesses for ψ

in the standard model.
The above equivalences show that the set of Σ2 sentences of arithmetic of

multiplication which are satisfiable in finite models as well as the set sl(FM (A))
are Σ0

1-hard. On the other hand the set of Σ2 sentences of arithmetic of multi-
plication which are satisfiable in finite models is in Σ0

1. a
When we do not restrict the quantifier depth of sentences of FM ((N,×)) we

can give a more precise characterization of sl(FM ((N,×))), see theorem 4.11.
In section 5 we will show that the above result is optimal, see theorem 5.6.
Now, let us turn to the arithmetic with exponentiation. By A we will denote

the structure (N, exp) and by B the structure (N,×).
It is well known that in the model (N, exp) the addition and multiplication can

be defined. So, in the case of the standard arithmetic, exponentiation is as strong
as addition and multiplication. It was showed by Bennett in [3] that the graph
of the exponentiation function is ∆0 definable from addition and multiplication
(for the proof see [9]). Basing on this result one can construct a formula which,
for each n, defines the graph of the exponentiation function in a finite model
Bn. Here, we show that in finite models the exponentiation function is definable
from sole multiplication.

It can be observed (compare [21], section 2.4.2) that if p and q are prime
numbers and n

2 < p < q < n then there is an automorphism h of Bn, such that
h(p) = q. So, primes p and q are indiscernible in Bn. This implies that it is
not possible to define the ordering relation in finite models of arithmetic with
multiplication only. Therefore, our result shows that, contrary to the standard
case, in finite models, exponentiation is strictly weaker than addition and multi-
plication. Indeed, as we will see, exponentiation in finite models is even strictly
weaker than sole multiplication.

Theorem 4.8. Let A = (N, exp) and B = (N,×). There exists a formula
ϕexp(x, y, z) ∈ F{×} such that, for each n, ϕexp defines in Bn the graph of the
exponentiation function from An.

Proof. By the remark preceding the theorem concerning the Bennett result,
and by the fact that we can define addition from multiplication on the initial
segment of a model Bn determined by b

√
n− 1c, it follows that there is a formula

ψe(x, y, z) such that ψe defines the graph of the exponentiation function on
{0, . . . , b

√
n− 1c} – fragment of a given model Bn. Thus, we show how to

extend the definition of the exponentiation function on the whole model Bn. It
is straightforward to check that for each n < 10 we can find a formula defining
in Bn the graph of the exponentiation function from An. So, let us assume that
n ≥ 10. The idea of the construction of ϕexp(x, y, z) is based on the following.
If y2 ≥ n ≥ 10 and x ≥ 2, then xy ≥ n and it suffices to check whether
z = n. Otherwise, y is in the segment on which we can define arithmetic in
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Bn and we can find w1 and w2 such that y = 2w1 + w2 with w2 < 2 Then,
we compute exp(x,w1) = u. If the result does not lie in {0, . . . , b

√
n− 1c},

then exp(x, y) ≥ n and it suffices to check if z = n. Otherwise, we finish the
computation of exp(x, y) by multiplying u2xw2 . Since w2 < 2 the latter can be
described by a first order formula.

So, we define a formula ϕexp(x, y, z) as a disjunction of the following two
formulas ϕ1(x, y, z) and ϕ2(x, y, z):

ϕ1(x, y, z) = (y = 0 ∧ z = 1) ∨ (x = 0 ∧ y 6= 0 ∧ z = 0) ∨ (x = 1 ∧ z = 1)∨
(y2 = MAX ∧ x 6= 0 ∧ x 6= 1 ∧ z = MAX),

ϕ2(x, y, z) = y2 6= MAX ∧ y 6= 0 ∧ y 6= 1 ∧ x 6= 0 ∧ x 6= 1∧
∃w1∃w2{ϕ+(2w1, w2, y) ∧ w2 < 2∧
[∃u(u2 6= MAX ∧ ψe(x,w1, u)∧
((w2 = 0 ∧ z = u2) ∨ (w2 = 1 ∧ z = u2x))∨
¬∃u(u2 6= MAX ∧ ψe(x,w1, u) ∧ z = MAX)]}.

As we can see ϕ1 handles all the easy cases and ϕ2 describes the most difficult
case. It is easy to verify that ϕexp defines the exponentiation function from a
model An whenever n ≥ 10. a

However, it can be mentioned that with respect to sufficiently large finite mod-
els, exponentiation have the same expressive power as arithmetic with addition
and multiplication. Namely, we have an analogue of lemma 4.4

Lemma 4.9. Let A = (N, exp) and B = (N,×). There are formulas ϕU (x),
ϕ×(x, y, z), ϕ0(x) and ϕMAX(x) in the language of arithmetic with exponentia-
tion which define in a model Ar the model isomorphic to a model Bn of arithmetic
with multiplication, whenever n ≥ 4 and r are such that 2n−1 + 1 ≤ r ≤ 2n.
Moreover, the isomorphism function f : |Bn| −→ |Ar| is defined as follows

f(a) =

{

a if a < n
r if a = n.

Proof. We use the fact that (2x)y = 2z if and only if z = xy. That allows
us to define easily the multiplication in the standard model for exponentiation
function. Of course, if we are in a finite model for exponentiation, we can define
multiplication only on an initial segment of this model.

Firstly, let us remind (see beginning of this section) that in finite arithmetic
with exponentiation we can define 0 and 1. Moreover, the formula

∀z∀y 6= 0, 1(exp(z, x) = MAX ⇒ exp(z, y) = MAX) ∧ x 6= 0 ∧ x 6= 1

defines 2 in all models of cardinalities greater than 5
Therefore, we will use the constant 2 in our formulas. We will present formulas

which define model An of arithmetic with multiplication in models Ar for n ≥ 4
and r ∈ {2n−1 + 1, . . . , 2n}.

The formula defining a universe ϕU (x) is 2x 6= MAX ∨ x = MAX . The
formula for equality relation ϕ=(x, y) is just x = y. For multiplication we take
ϕ×(x, y, z) defined as

((exp(exp(2, x), y) = exp(2, z) ∧ exp(2, z) 6= MAX)∨

(exp(exp(2, x), y)) = MAX ∧ z = MAX).
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It is straightforward to check that these formulas define the model Bn in models
Ar for n, r as above. a

As a consequence of lemma 4.9 and theorem 4.3 we have

Theorem 4.10. For each formula ϕ(x1, . . . , xk) ∈ F{+,×}, there is formula
ψ(x1, . . . , xk) ∈ F{exp} with the same free variables as in ϕ(x1, . . . , xk) such that
for each a1, . . . , ak ∈ N,

|=sl ϕ[a1, . . . , ak] if and only if |=sl ψ[a1, . . . , ak].

We end this section with the description of complexity of Th(FM (A)) and
sl(FM (A)) for A being a model for arithmetic with multiplication or exponen-
tiation.

Theorem 4.11. Let A be (N,×) or (N, exp).

a) Th(FM (A)) is Π0
1–complete.

a) sl(FM (A)) is Σ0
2–complete.

Proof. The proof of part a) for A = (N,×) is a consequence of the first part
of theorem 4.7 . The proof for A = (N, exp) relays on the fact that in finite
models for exponentiation we can reconstruct the theory of multiplication in the
sense of lemma 4.9.

The proof of the second part is a modified version of the proof of Σ2–complete-
ness of sl(FM ((N,+,×))) from [16]. In that article the reduction of a Σ2–com-
plete problem, Fin, to the sl(FM ((N,+,×))) was given (here Fin is the set of
indices of Turing machines with a finite domain). a

Let us observe that the reduction from [16] uses formulas which do not belong
to Σ2 therefore we cannot state the last result for slΣ2(FM (A)).

§5. Decidability of the existential theory of multiplication and order.

In the present section the vocabulary is fixed and contains the function symbol
for multiplication, one binary predicate for order relation and constants 0, 1 and
MAX .

Let us observe that if we consider the Σ1 theory of arithmetic with multiplica-
tion then the presence of constants 0, 1 and MAX in our language is inessential.
In all models of cardinality greater than 3 we can define them by means of Σ1

formulas with multiplication.

x = MAX if and only if ∃z1, z2(z1 6= x ∧ z2 6= x ∧ z1z2 = x) ∧ xx = x,
x = 0 if and only if ∃z1, z2(z1 6= z2 ∧ z1x = x ∧ z2x = x) ∧ x 6= MAX,
x = 1 if and only if ∃z1, z2(z1 6= z2 ∧ z2 6= 0 ∧ z1 6= 0∧

z1x = z1 ∧ z2x = z2).

Therefore, we could quantify out the constants by adding new existential quan-
tifiers.

Let us observe, that there are also equivalent definitions of all these constants
by Π1 formulas with multiplication. Namely
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x = 0 if and only if ∀y(xy = x),
x = 1 if and only if ∀y(xy = y),
x = MAX if and only if ∀y(y = 0 ∨ xy = x) ∧ x 6= 0.

As we show in the third paragraph, Σ2 theory of multiplication is undecidable
with respect to sufficiently large finite models. Now, we are going to show that
the Σ2 lower bound for the undecidability of the theory of multiplication is
optimal. Namely, we prove that the theory slBool(Σ1)(FM ((N,×,≤))) = {ϕ ∈
Bool(Σ1) : FM ((N,×,≤)) |=sl ϕ} is decidable.

It is worth to note that the theory slΣ∗
1
(FM ((N,×,≤))) is undecidable when

Σ∗
1 denotes the class of formulas of the form ∃x1 . . . ∃xnψ where in ψ there may

occur bounded quantifiers of the form: ∃x ≤ t, ∀x ≤ t. This fact can be easily
seen from the Tarski’s definition of addition and MDRP theorem. One can also
observe that the set slΣ1(FM ((N, S,×))), where S is the successor function, is
also undecidable.

To prove the main result of this section we will need the following.

Fact 5.1. If ϕ ∈ Σ1 and ϕ is satisfiable in finite models then |=sl ϕ.

Proof. It suffices to show that for each k there is N such that for each n ≥ N
there is a submodel of An which is isomorphic to Ak. Therefore, if ϕ ∈ Σ1 and
Ak |= ϕ then each model of cardinality greater than or equal toN has a submodel
in which ϕ is true. Since ϕ is a Σ1 formula it has to be true also in An. Thus,
|=sl ϕ.

Let a model Ak be given. It has the universe {0, 1, . . . , k}. We will define the
function ˆ: |Ak| −→ |An| and then we prove that if n is sufficiently large, the
image of ˆ will define the submodel of An isomorphic to Ak.

Let p1, . . . , pm be all primes < k. For i ≤ m let

p̂i = dnlogk pie.

Each element a ∈ {2, . . . , k−1} has a unique representation of the form pr1
1 · · · prm

m .
To preserve multiplication we define â as p̂r1

1 · · · p̂rm
m .

Of course we put: 0̂ = 0, 1̂ = 1 and k̂ = n.
To prove that for sufficiently large n, the image of ˆ defines a submodel of

An isomorphic to Ak it suffices to prove that for all sufficiently large n, all
r1, . . . , rm < k and all a, b ∈ {2, . . . , k − 1},

1. pr1
1 · · · prm

m < k ⇐⇒ p̂r1
1 · · · p̂rm

m < n,

2. a < b ⇐⇒ â < b̂.

Clearly, if all requirements of the form 1 and 2 are satisfied then ˆ is an
injection of Ak into An.

We will show only that for a, b ∈ {2, . . . , k− 1} in all sufficiently large models
An, the condition from point 2 is satisfied. The point 1 is proven in an analogous
way.
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Assume a = pr1
1 · · · prm

m , b = ps1
1 · · · psm

m and a < b. Then,
â = p̂r1

1 · · · p̂rm
m

= dnlogk p1er1 · · · dnlogk pmerm

< (nlogk p1 + 1)r1 · · · (nlogk pm + 1)rm

≤ (nlogk p1+ε′

)r1 · · · (nlogk pm+ε′

)rm

≤ (nlogk (p1+ε))r1 · · · (nlogk (pm+ε))rm , and for sufficiently large n, ε′ and ε
may be chosen arbitrary small,

≤ nlogk ((p1+ε)r1 ···(pm+ε)rm )

< nlogk (p
s1
1 ···psm

m ), for sufficiently small ε,
= (nlogk p1)s1 · · · (nlogk pm)sm

≤ p̂s1
1 · · · p̂sm

m

= b̂.

By the same argument, if a > b then â > b̂. Of course if a = b then â = b̂.
This finishes the proof of the equivalence from condition 2.

For each requirement of the form 1 and 2 we can choose N such that for each
n ≥ N this requirement is satisfied in An. To end the proof let us observe, that
there is a finite number of such requirements to satisfy. Therefore, if we take the
maximal N in all models of cardinalities greater than such N the image of ˆ will
define a submodel isomorphic to Ak. a

As an immediate corollary of fact 5.1 we obtain

Corollary 5.2. Let ϕ ∈ Σ1. Then, ϕ is satisfiable in finite models if and
only if |=sl ϕ.

Observe that for an arbitrary sentence ϕ ∈ Σ1(≤,×),

ϕ ∈ ThΣ1(FM (A)) if and only if A0 |= ϕ.

Therefore, ThΣ1(FM ((N,×,≤))) is decidable. However, we can state more.

Fact 5.3.

T = {(ϕ, k) : ϕ ∈ Σ1(×,≤) ∧ ∀n ≥ k An |= ϕ}
is decidable.

Proof. By the proof of fact 5.1, for each k we can compute N(k) such that if
a Σ1(×,≤) is satisfiable in Ak then it is satisfiable in all models An for n ≥ N(k).
Therefore, to check whether (ϕ, k) belongs to T it suffices to compute N(k) and
then to check whether Ar |= ϕ for all r such that k ≤ r < N(k). If the latter is
true then ϕ is true in all models of cardinality greater than or equal to k. a

Now, we are going to prove the stronger result, namely, that the theory
slΣ1(FM ((N,×,≤))) is decidable. In what follows by P2 we denote the set
of powers of 2. We will need the following

Lemma 5.4. Let G(n) = 2zn where zn = 2n2
2
3 (4n−1). For all a1, . . . , an such

that 1 < a1 < . . . < an there exists b1, . . . , bn ∈ P2 ∩ {2, . . . , G(n)} such that for
all i, j,m, l ≤ n

aiaj < amal if and only if bibj < bmbl.
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Proof. We will prove by induction on k ≤ n the following:

∀k ≤ n∃b1, . . . , bk ∈ P2 ∩ {2, . . . , g(n, k)}∀t1(x1, . . . , xk), t2(x1, . . . , xk)

{∧i∈{1,2} rk(ti) ≤ h(n, k) ⇒
[t1(a1, . . . , ak) < t2(a1, . . . , ak) ⇐⇒ t1(b1, . . . , bk) < t2(b1, . . . , bk)]},

where h(n, k) = 222(n−k)

and g(n, k) = 2vnk , vnk = 2k2
2
3 (4n−k(4k−1)).

For k = n we obtain the thesis.
A few words should be said on the choice of functions g and h. They satisfy

the following recursive dependencies which will be used during the proof.

σ1 : 2(h(n, k + 1))2 ≤ h(n, k),
σ2 : g(n, k + 1) ≥ (g(n, k))h(n,k+1),
σ3 : g(n, k + 1) ≥ (g(n, k))h(n,k+1)+1,

σ4 : g(n, k + 1) ≥ (g(n, k))2(h(n,k+1))2 .

Of course, h satisfies (σ1) and it suffices to show only (σ4). To do this it suffices
to verify that g satisfies the following equality

g(n, k) = 2Πi=k
i=12(h(n,i))2 .

Indeed, it is easy to see that σ4 could be strengthen to equality.
Each time we will use one of σi we will mention it by indicating a proper

condition.
We consider the following formula:

∀t1(x1, . . . , xk), t2(x1, . . . , xk){
∧

i∈{1,2}

rk(ti) ≤ h(n, k) ⇒(*)

[t1(a1, . . . , ak) < t2(a1, . . . , ak) ⇐⇒ t1(b1, . . . , bk) < t2(b1, . . . , bk)]}.
Let us observe that if b1, . . . , bk satisfy (∗), then for each m ≥ 1 the sequence

bm1 , . . . , b
m
k also satisfies (∗).

For k = 1 we put b1 = 2. Now, let us assume that there exists b1, . . . , bk which
satisfy the inductive assumption for k < n and we will find proper c1, . . . , ck+1,
possibly with ci 6= bi for i ≤ k. We will consider two cases.

Firstly, let us assume that there exists t(x1, . . . , xk), t′(x1, . . . , xk), w such that
rk(t) + w, rk(t′) ≤ h(n, k + 1) and

t(a1, . . . , ak)aw
k+1 = t′(a1, . . . , ak).(**)

Then, the new sequence c1, . . . , ck+1 must satisfy the equation t(c1, . . . , ck)cwk+1 =
t′(c1, . . . , ck). Let r be such that

2r =
t′(b1, . . . , bk)

t(b1, . . . , bk)
.

If w|r we set ci = bi for i ≤ k and set ck+1 to 2
r
w . If w 6 |r, then for i ≤ k we take

ci = bwi and as ck+1 we put 2r. Observe that in both cases ci ≤ g(n, k + 1) for
i ≤ k+ 1 (by σ2) and the sequence c1, . . . , ck satisfies (∗). Now, we should show
that our choice of c1, . . . , ck+1, is suitable.

It suffices to show that if s(x1, . . . , xk), s′(x1, . . . , xk) and u are such that
rk(s) + u ≤ h(n, k + 1) and rk(s′) ≤ h(n, k + 1), then

s(a1, . . . , ak)au
k+1 < s′(a1, . . . , ak) ⇐⇒ s(c1, . . . , ck)cuk+1 < s′(c1, . . . , ck)
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and

s′(a1, . . . , ak) < s(a1, . . . , ak)au
k+1 ⇐⇒ s′(c1, . . . , ck) < s(c1, . . . , ck)cuk+1.

We will show the first equivalence. Let

s(a1, . . . , ak)au
k+1 < s′(a1, . . . , ak).

Then
sw(a1, . . . , ak)auw

k+1 < s′
w

(a1, . . . , ak)

and, by (**),

sw(a1, . . . , ak)t′
u
(a1, . . . , ak)auw

k+1 < s′
w

(a1, . . . , ak)tu(a1, . . . , ak)auw
k+1.

It follows that

sw(a1, . . . , ak)t′
u
(a1, . . . , ak) < s′

w
(a1, . . . , ak)tu(a1, . . . , ak).

We need the fact that rk(swt′
u
), rk(s′

w
tu) ≤ h(n, k). Indeed,

rk(swt′
u
) ≤ rk(s)w + (w − 1) + 1 + rk(t′)(h(n, k + 1) − rk(s)) +

+ (h(n, k + 1) − rk(s) − 1)

≤ rk(s)h(n, k + 1) + h(n, k + 1) +

+ h(n, k + 1)(h(n, k + 1) − rk(s)) +

+ (h(n, k + 1) − rk(s) − 1)

≤ h(n, k + 1)h(n, k + 1) + h(n, k + 1) + h(n, k + 1)

≤ (h(n, k + 1))2 + 2h(n, k + 1)

≤ 2(h(n, k + 1))2

≤ h(n, k).

The last inequality is simply the condition (σ1). The reasoning for rk(s′
w
tu) ≤

h(n, k) is perfectly parallel. So, by (∗) applied to c1, . . . , ck we have,

sw(c1, . . . , ck)t′
u
(c1, . . . , ck) < s′

w
(c1, . . . , ck)tu(c1, . . . , ck)

and therefore

sw(c1, . . . , ck)t′
u
(c1, . . . , ck)cuw

k+1 < s′
w

(c1, . . . , ck)tu(c1, . . . , ck)cuw
k+1.

By the choice of ck+1 we obtain finally that

s(c1, . . . , ck)cuk+1 < s′(c1, . . . , ck).

For the converse implication let us observe that we can reverse all steps in the
above reasoning. The second equivalence is proven similarly.

Now, let us assume that there is no t(x1, . . . , xk), t′(x1, . . . , xk), w such that
rk(t) + w, rk(t′) ≤ h(n, k + 1) and t(a1, . . . , ak)aw

k+1 = t′(a1, . . . , ak).
Let (t1, t

′
1, w1), . . . , (tm, t

′
m, wm) be the list of all triples such that rk(ti)+wi ≤

h(n, k + 1), rk(t′i) ≤ h(n, k + 1) and

ti(a1, . . . , ak)awi

k+1 < t′i(a1, . . . , ak)

and let (s1, s
′
1, u1), . . . , (sr, s

′
r, ur) be the list of all triples such that rk(sj) <

h(n, k + 1), rk(s′j) + uj ≤ h(n, k + 1) and

sj(a1, . . . , ak) < s′j(a1, . . . , ak)a
uj

k+1.
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We should define c1, . . . , ck+1 in a way that preserves all inequalities above.

If the first list is empty, we can define ck+1 as b
h(n,k+1)+1
k since bk is the

largest of bi’s and, for i ≤ k, set ci = bi. By σ3 the new sequence will satisfy (∗).
Otherwise, for i ≤ m, let us define νi such that

2νi = t′i(b1, . . . , bk)/ti(b1, . . . , bk).

Next, we define µj such that if sj(b1, . . . , bk) ≥ s′j(b1, . . . , bk), then

2µj = sj(b1, . . . , bk)/s′j(b1, . . . , bk)

and otherwise µj = 0 for j ≤ r.
For each i ≤ m, j ≤ r

t
uj

i (a1, . . . , ak)swi

j (a1, . . . , ak)a
wiuj

k+1 < t′
uj

i (a1, . . . , ak)s′
wi

j (a1, . . . , ak)a
wiuj

k+1

and therefore

t
uj

i (a1, . . . , ak)swi

j (a1, . . . , ak) < t′
uj

i (a1, . . . , ak)s′
wi

j (a1, . . . , ak).

Again, rk(t
uj

i swi

j ) ≤ h(n, k) and rk(t′
uj

i s′
wi

j ) ≤ h(n, k) so, by the inductive
assumption, we obtain that

t
uj

i (b1, . . . , bk)swi

j (b1, . . . , bk) < t′
uj

i (b1, . . . , bk)s′
wi

j (b1, . . . , bk)

and
(

sj(b1, . . . , bk)

s′j(b1, . . . , bk)

)wi

<

(

t′i(b1, . . . , bk)

ti(b1, . . . , bk)

)uj

.

Thus,

(2µj )wi < (2νi)uj

and

2
µj
uj < 2

νi
wi .

Finally, we obtain that for each i ≤ m, j ≤ r
µj

uj

<
νi

wi

.

We may assume that µ1

u1
is maximal of all

µj

uj
and ν1

w1
is minimal of all νi

wi
. If

µ1

u1
+ 1 < ν1

w1
then the sequence ci = bi for i ≤ k and ck+1 = 2d

µ1
u1

e will satisfy all
relevant inequalities. However, that choice of c1, . . . , ck+1 would be impossible
if µ1

u1
+ 1 ≥ ν1

w1
. In this case let us define, for i ≤ k, ci as b2w1u1

i . Now, for the

sequence c1, . . . , ck, we can define µ′
j and ν′i exactly in the same way as we did it

for b1, . . . , bk. Then µ′
j = 2µjw1u1 and ν′i = 2νiw1u1. Since

µ′
1

2u1
,

ν′
1

2w1
are natural

numbers such that
µ′

1

2u1
<

ν′
1

2w1
, we have that

µ′
1

u1
+ 1 <

ν′
1

w1
. Thus, we can take

ck+1 as 2
µ′
1

u1
+1 (here we use σ4). It is straightforward to check that the sequence

c1, . . . , ck+1 will satisfy the condition (∗) for k + 1. a
Now, we are ready to prove the following proposition.

Proposition 5.5. Let F (n) = 2zn + 1 where zn = 2n+12
2
3 (4n+1−1). Then, for

each ϕ ∈ Σ1, ϕ simple with all variables x1, . . . , xn, if ϕ has a finite model, then
ϕ has a model of cardinality less than or equal to F (n).
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Proof. Let ϕ ∈ Σ1 satisfies the assumptions. If x1, . . . , xn is the list of all
variables in ϕ then, by lemma 5.4, if ϕ has a model then it has a finite model
of cardinality less than or equal to G(n + 1), where G(i) is the function from
lemma 5.4. We should take n + 1 instead of n because besides of the bound
on witnesses for x1, . . . , xn we should also bound the witness for the size of the
maximal element of a model in which ϕ is satisfied. Now, the thesis follows from
the fact that F (n) = G(n+ 1). a
From corollary 5.2 and proposition 5.5 the following theorem follows immediately.

Theorem 5.6. The theory slΣ1(FM ((N,×,≤))) = {ϕ ∈ Σ1 : |=sl ϕ} is decid-
able.

Another consequence of lemma 5.4 is the following

Theorem 5.7. The existential theory of the standard model of arithmetic with
multiplication and order is decidable. Moreover, the size of witnesses in the stan-
dard model for a simple sentence ϕ with all variables x1, . . . , xn can be bounded

by 2zn, where zn = 2n2
2
3 (4n−1).

The last theorem is a direct consequence of lemma 5.4. We obtained slightly
better bound than in proposition 5.5 because we do not need to estimate the
maximal element as it was the case for satisfiability in finite models.

§6. Concatenation defines in finite models addition and multiplica-

tion. In the present section we define the arithmetic of concatenation of finite
words and show that in finite models it has the strength of the arithmetic of
addition and multiplication.2 This is a partial answer for a question from [2]
about existing of other than BIT natural relations which define in finite models
addition and multiplication.

The arithmetic of concatenation is one of the three classical theories of arith-
metics, the others being the arithmetic of addition and multiplication and the
arithmetic of hereditarily finite sets. The standard model for arithmetic of con-
catenation can be defined as follows.

Definition 6.1. Let Γt = {a1, . . . , at} be an alphabet. A word over Γt is a
finite sequence of elements from Γt. The empty word is denoted by λ. By Γ∗

t we
denote the set of all words over Γt, i.e.

Γ∗
t = {xk . . . x0 : k ∈ ω ∧ ∀i ≤ k xi ∈ Γt} ∪ {λ}.

By FW t we denote the structure

(Γ∗
t , *t,a1, . . . ,at),

where *t is the concatenation operation on words from Γ∗
t and ai is a word

consisting of one letter ai.

Finite words in the universe of FW t can be identified with natural numbers
via t–adic representation. It has an advantage over usual binary or decimal
representation that each number is represented by exactly one word in Γ∗

t . The
correspondence between finite words and natural numbers is established by a
function nrt : Γ∗

t −→ ω, where

2The section is based on [25].
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• nrt(λ) = 0,
• nrt(ai) = i, for 1 ≤ i ≤ t,
• nrt(un . . . u0) = Σi=n

i=0 nrt(ui)t
i, for ui ∈ Γt.

The function nrt is one–to–one and onto and induces an ω–type ordering on Γ∗
t

defined as
u ≤ w if and only if nrt(u) ≤ nrt(w).

In what follows we will implicitly treat elements of Γ∗
t as natural numbers with

the identification given by nrt. Moreover, we assume that t ≥ 2. For the case
t = 1 the model FW 1 is easily seen to be equivalent to arithmetic of addition.
Indeed, when we identify words over one letter alphabet with natural numbers
via nr1, *1 is just the addition operation.

Let us also present the arithmetic of hereditarily finite sets. We define it in
order to give a more complete description of the state of knowledge on various
sets of built–in relations in finite models which are equivalent to addition and
multiplication.

Definition 6.2. Let ∅ be the empty set and let P(x) be a power set of a set x.
Let V0 = ∅ and, for i ∈ N, Vi+1 = P(Vi). Furthermore, let Vω =

⋃

i∈N Vi. The
model of the arithmetic of hereditarily finite sets is defined as HF = (Vω,∈).

The relation BIT ⊆ N2 is defined as: BIT (x, y) if and only if the x-th bit in
the binary representation of y is one. Thus, if y = Σi=n

i=0ai2
i, where ai ∈ {0, 1},

then
BIT (x, y) if and only if ax = 1.

It is not hard to prove that

Theorem 6.3. HF is isomorphic to (N,BIT ).

The claimed isomorphism function can be defined by induction on i for the
family {Vi}i∈N. The function f0 : V0 −→ N is just the empty function and if we
defined fi : Vi −→ N then fi+1 : Vi+1 −→ N can be defined for y ∈ Vi+1 as

fi+1(y) = Σx∈y2fi(x).

It is straightforward to check that a function

f =
⋃

i∈N

fi

is a well defined function and that it is the unique isomorphism between HF and
(N,BIT ).

Since we can identify elements of FW t and HF with natural numbers we can
easily extend our definition of FM (A) to these models and talk about FM (FW t)
and FM (HF ).

The class FM (HF ), or, equivalently, FM ((N,BIT )), is well examined. The
following was proven in [2].

Theorem 6.4 ([2]). Operations of addition and multiplication are definable in
FM ((N,BIT ,≤)).

Later, Dawar et al. showed that

Theorem 6.5 ([7]). The standard ordering relation is definable in FM (HF ).
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Of course, the above two results give

Theorem 6.6 ([2],[7]). Operations of addition and multiplication are definable
in FM (HF ).

The family FM (HF ) was considered also by Asterias and Kolaits. Let us
define ∆∈

0 as the class of MAX–free formulas ϕ in F{∈} such that all quantifiers
occurring in ϕ are of the form Qx ∈ y, where Q ∈ {∃, ∀}. Therefore, contrary to
the usual definition of ∆0(σ), there is no ≤ predicate in formulas from ∆∈

0 . It
was shown in [1] that the least fixed point operator of arity 2 applied to a formula
in ∆∈

0 is expressible on FM (HF ) in first order logic. Moreover, they observed
that the analogous fact for the least fixed point of arbitrary arity implies that
PTIME ⊆ LINH . Since LINH ( PSPACE , the separation of PTIME from
PSPACE follows.

Now, let us turn to the standard model for arithmetic of concatenation, FW t.
(We assume that t ≥ 2.) FW t was considered e.g. by Quine who showed in [20]
how to define in it addition and multiplication. Later, Bennett in [3] considered
the model (Γ∗

t , *t,≤,a1, . . . ,at). Let us denote the vocabulary of this model
by σt−con. Bennett showed that we can define addition and multiplication by
∆0(σt−con) formulas. So, we have.

Theorem 6.7 ([3]). For each t ≥ 2, the graphs of addition and multiplication
are definable in (Γ∗

t , *t,≤,a1, . . . ,at) by ∆0(σt−con) formulas.

In what follows, we show that in finite models from FM (FW t) we can define
addition and multiplication. In particular, we do not need in finite models the
ordering relation to define the full arithmetic from concatenation. Indeed, the
ordering is definable in FM (FW t).

Let us observe that ≤ is definable from concatenation also in FW t, see e.g.
[20]. However, the known definitions of the relation x ≤ y use elements of FW t

which are exponentially larger than x and y. Thus, one cannot apply them in the
finite models context. The definability of ≤ in finite models follows essentially
from the fact that being in a finite model we can detect whether a value of a
term s is less than the maximal element or not.

Lemma 6.8. Let t ≥ 1 and let lh(x) be the length function for words in Γ∗
t .

Relations lh(x) = lh(y), lh(x) < lh(y) and x ≤ y are first order definable in
FM (FW t).

Proof. For t = 1 the claim is obvious so let t ≥ 2. Observe, that it suffices
to define only the predicate lh(x) < lh(y), the others being easily definable from
it and concatenation. E.g. x ≤ y can be defined as follows:

x ≤ y ⇐⇒ x = y ∨ lh(x) < lh(y)∨

[lh(x) = lh(y) ∧ ∃z1, z2, z3 (
∨

1≤i<j≤t

(x = z1 * ai * z3 ∧ y = z2 * aj * z3))].

Now, we will define lh(x) < lh(y). As a first step we define ψ(x, y) of the form

∃z (x * z 6= MAX ∧ y * z = MAX)

with the following properties:
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(i) if lh(x) + 2 ≤ lh(y) then ψ(x, y),
(ii) if lh(x) − 1 ≥ lh(y) then ¬ψ(x, y).

To see this, let x, y ∈ |FW t
n|. If lh(x)+2 ≤ lh(y) then let k = lh(n)− lh(x)−1.

We have that lh(x *t a
k
1) < lh(n) and lh(y *t a

k
1) > lh(n). Thus, FW t

n |= ψ[x, y].
On the other hand, if lh(x)−1 ≥ lh(y), then for all words z, lh(x *t z) > lh(y *t z).
So, for all words z, if y *t z ≥ n then x *t z ≥ n and FW t

n |= ¬ψ[x, y].3

Using ψ, we may define the formula ϕ̃<(x, y) :=

ψ(x * x, y * y) ∧ x * x 6= MAX ∧ y * y 6= MAX.

It holds in a given finite model from FM (FW t) that for all x, y

if lh(x) < lh(y) <
lh(MAX)

2
then ϕ̃<(x, y) and ¬ϕ̃<(y, x).

It can be easily proven by noting that if there is any difference in lengths of x
and y then the difference between lengths of x * x and y * y will satisfy one of
the conditions, (i) or (ii), for a formula ψ(x, y).

Unfortunately, ϕ̃< gives us no information when lh(x) = lh(y).4 Nevertheless,
the following formula ϕ̃=(x, y):=

x * x * x *x 6= MAX ∧ y * y * y * y 6= MAX ∧ [x = y = λ∨
∃x′, y′ (

∨

1≤i,j≤t

(x * x = x′ * ai ∧ y * y = y′ * aj ∧ ϕ̃<(x′, y * y) ∧ ϕ̃<(y′, x *x)))],

has the property that

if lh(x), lh(y) <
lh(MAX)

4
then

lh(x) = lh(y) if and only if ϕ̃=(x, y).

ϕ̃=(x, y) simply says that shortening one of the words: x * x or y * y, by one
letter results with a word which is shorter than the other one. Such a situation
is possible only when lh(x) = lh(y). If y and x have different lengths then the
difference between x * x and y * y will be doubled. It follows that removing one
letter from x * x or y * y will not make these words of equal length.

Now, we will define the predicate lh(x) = lh(y) on a whole model. Let ϕ′
=(x, y)

be the following formula

∃x1, . . . , x6, y1, . . . , y6[x = x1 * . . . *x6 ∧ y = y1 * . . . * y6∧
∧

i≤6

(xi *xi *xi *xi * xi 6= MAX ∧ yi * yi * yi * yi * yi 6= MAX ∧ ϕ̃=(xi, yi))].

ϕ=(x, y) holds if it is possible to divide x and y into six subwords which are so
short that ϕ̃= can properly express the equality between their lengths.5 In such
a case lenghts of x and y are equal. However if the lenght of the maximal element
is no greater than 25 such a division may be impossible even if lh(x) = lh(y).

3Let us observe, that we cannot improve the condition in (i) to lh(x) + 1 ≤ lh(y). As a
counterexample one can take a model FW 2

4
, x = a2 and y = a1a1.

4E.g. for two elements alphabet and a model FW 2

8
we have, FW 2

8
6|= ϕ̃<[a1, a1] and

FW 2

8
|= ϕ̃<[a1,a2].

5Let us observe that we check in ϕ= a sufficient condition for lh(xi), lh(yi) < lh(MAX)/4,
for i ≤ 6, to make ϕ̃= work properly.
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So, finally the equality lh(x) = lh(y) can be expressed by the following formula
ϕ=(x, y):

ϕ′
=(x, y) ∧

25
∨

n=1

[n = MAX∧

∨

u, v ∈ Γ∗
t

lh(x) = lh(y) ≤ n

(x = u ∧ y = v)].

Now, lh(x) < lh(y) can be written as

∃y1, y2 [y = y1 * y2 ∧ y2 6= λ ∧ ϕ=(y1, x)].

a
Now, we can state the main result of this section.

Theorem 6.9. For t ≥ 2, the graphs of addition and multiplication are defin-
able in FM (FW t).

We only sketch two possible lines of proofs for the above theorem. Since
the ordering relation is definable in FM (FW t), one can prove the theorem by
transferring the proof of Bennett’s theorem (theorem 6.7) to the finite model
context. The only problem that should be overcome is that in the standard model
one can use bounded quantification Qx ≤ s, where s is a term in the language of
FW t. However, in finite models the value of this term can exceed the maximal
element of a finite model. Therefore, one should replace such quantification by
quantification over tuples of elements of a given finite model.6 However, instead
of following quite general and involved constructions of [3] one can give the
straightforward definition of addition and multiplication. Such definitions are
given in [25].

§7. Spectra of theories of arithmetics. In this section we consider the
spectrum problem for families of FM (A). Usually the spectrum of a sentence
is defined as the set of cardinalities of all finite structures being a model of this
sentence. For our purpose we introduce a slightly different notion of spectrum.

Definition 7.1. By an FM (A)–spectrum of a sentence ϕ we define the set of
cardinalities of models from FM (A) in which ϕ is true, i.e.

SpecFM(A)(ϕ) = {n+ 1 : An |= ϕ}.
By a spectrum of FM (A), denoted by Spec(FM (A)), we define the set of all
FM (A)–spectra of sentences in the language of FM (A). In what follows we will
omit subscript FM (A) in SpecFM (A)(ϕ).

The above notion of spectrum has different properties than the classical one.
Observe for example that the family Spec(FM (A)) is closed not only on set-
theoretical union and intersection but also on the set-theoretical complement.

6In the context of arithmetic of addition and multiplication there is a standard method of
translating ∆0 formulas to formulas interpreted in finite models, see e.g. [21].
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Moreover, if a structure A is a restriction of a structure A′ to some subsignature,
then Spec(FM (A)) ⊆ Spec(FM (A′)). So, for example we have:

Spec((N,+)) ∪ Spec((N,×)) ⊆ Spec((N,+,×))

It is not difficult to describe the spectrum of FM ((N,+)). Indeed, for each
sentence ϕ ∈ F{+} there is a formula ϕ∗(y) such that

Spec(ϕ) = {n+ 1 : (N,+) |= ϕ∗[n]}.
To construct ϕ∗(y) one can take the formula from lemma 3.1 and replace the
order predicate by its definition in (N,+).

This shows that there is a connection between elements of Spec(FM ((N,+)))
and sets of natural numbers definable in the structure (N,+). The theorem
of Ginsburg and Spanier (for a proof see [24]) states that sets definable in the
standard model for arithmetic with addition are exactly the ultimately periodic
sets. Note that a set X ⊆ N is ultimately periodic if there are a positive integer
p and a natural number a such that ∀n ≥ a(n ∈ X ⇐⇒ n + p ∈ X). In
consequence, Spec(FM ((N,+))) is just the family of ultimately periodic sets.
Moreover, it follows from [21] that this is also a spectrum of arithmetic with
addition in the language with counting quantifiers.

Let us observe that Spec(FM ((N, <))) is the family of finite and cofinite
subsets of N.

It is known that ∆0–formulas define in (N,+,×) exactly the sets in the linear
time hierarchy, LINH .7 This allows to give a known characterization of the fam-
ily Sp(FM ((N,+,×))). Namely, Sp(FM ((N,+,×))) = LINH . The inclusion
from right to left follows from the fact that if a set X is ∆0 definable in (N,+,×)
then there is a formula ϕX such that in each finite model An ∈ FM ((N,+,×))
ϕX defines the set X ∩ {0, . . . , n}. The other inclusion can be easily deduced
from lemma 3.1. Indeed, lemma 3.1 allows us to state the following, more general
fact.

Fact 7.2. If R0, . . . , Rn are relations definable in the structure (N,+,×) by
∆0–formulas, then each set of Spec((N,+,×, R0, . . . , Rn)) is ∆0–definable in
the standard model of arithmetic.

From lemma 4.5 we may deduce that there is a close connection between
Spec(FM ((N,×))) and Spec(FM ((N,+,×))).

Proposition 7.3. Let X belong to the spectrum of arithmetic with addition
and multiplication. Then the set

Y = {r + 1 : ∃n ≥ 2(n ∈ X ∧ (n− 2)2 + 1 ≤ r ≤ (n− 1)2)}
belongs to the spectrum of arithmetic with multiplication.

Proof. Let ϕ be a sentence of the language of arithmetic with addition and
multiplication such that Spec(ϕ) = X . Then Y is the spectrum of the sentence
which is constructed from ψ occurring in lemma 4.5. The only modification is
connected with including, or excluding, the one element model. a

7For a definition of LINH and for a proof of this fact see e.g. [9].
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The following examples show that not all sets from Spec((N,×)) are of the
form which occurs in the above proposition.

Examples.

Let ϕmax
< (x) denote the following formula xx 6= MAX ∧∀y(yy 6= MAX ∧ y 6=

x⇒ ϕ<(y, x)), where ϕ<(x, y) is a formula defined at the beginning of the fourth
section. It says that x is a maximal element such that xx 6= MAX

1. Let Φ0 be the following sentence:

∃x(ϕmax
< (x) ∧ ∃=1w(w2 = MAX ∧ wx 6= MAX)).

If x satisfies ϕmax
< (x) then an element w mentioned in Φ0 is just x+ 1. Thus, Φ0

expresses that x(x+1) < MAX and, by the uniqness of w, that x(x+2) ≥MAX .
Therefore, for each i,

Ai |= Φ0 if and only if ∃n ≥ 1(n2 + n < i ≤ n2 + 2n).

So, Spec(Φ0) = {i : ∃n ≥ 1 (n2 + n+ 1 < i ≤ n2 + 2n+ 1)}.

2. Let Φ1 be the following sentence:

∃x[ϕmax
< (x) ∧ ∃y∃=1z(y 6= z ∧ y2 = MAX ∧ z2 = MAX∧

xy 6= MAX ∧ xz 6= MAX)]

Now, we expressed that if x is as above then x(x + 2) < MAX but, by the
maximality of x, (x+ 1)2 ≥MAX . We obtain that for each i,

Ai |= Φ1 if and only if ∃n ≥ 1 (i = n2)

So, Spec(Φ1) = {n2 + 1 : n ∈ N}.

3. Let Φ2 be the following sentence:

∃x[x3 6= MAX ∧ ∀y(ϕ<(x, y) → y3 = MAX) ∧ ∃=1z(ϕ<(x, z) ∧ x2z 6= MAX)]

By an argument similar to that used above, for each i,

Ai |= Φ2 if and only if ∃n ≥ 1(n3 + n2 < i ≤ n3 + 2n2).

So, Spec(Φ2) = {i : ∃n ≥ 1(n3 + n2 + 1 < i ≤ n3 + 2n2 + 1)}.

Using the equality x4 − 1 = (x2 − 1)(x2 + 1) one can easily show that also the
set {n4 + 1 : n ∈ N} is in the spectrum of multiplication. The same fact holds
also for a polynomial x4 − 2x2 + 2. The following question naturally arises. For
which polynomials p the range of p is in the spectrum of multiplication? We give
some comments concerning this question in the last section of the paper.

The proposition 7.3 shows that the spectrum of the arithmetic with addition
and multiplication and the spectrum of the arithmetic with multiplication only
are mutually interpretable. We will show that they are not equal.

Firstly we observe that the set of even natural numbers, let us denote it by
PAR, belongs to the spectrum of the arithmetic with addition. Indeed, let ϕ be
the following sentence: ∃x∃y(y = x+ x∧ y+ 1 6= MAX ∧ y+ 1 = MAX). Then
Spec(ϕ) = PAR.

Our next result shows that PAR does not belong to the spectrum of the
arithmetic with multiplication.
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For n, c ∈ N , by I(n, c) we denote the interval 〈d n
c+1e, bn−1

c
c〉. Then, for any

element a ∈ I(n, c), ca < n and (c+1)a ≥ n. In what follows we use the following
consequence of the prime number theorem (see e.g. [19]).

Theorem 7.4. a) For arbitrary k there exists m such that for all n > m there
are at least k primes between n and 2n.

b) For arbitrary k and c there is m such that for all n > m, I(n, c) contains
at least k prime numbers.

We will consider structures from FM (A), where A = (N,×).
The next construction was originally used by the second author in [25] to

show that the family FM ((N,×)) is not axiomatizable within the class of all
finite models by any set of axioms with bounded quantifier depth.

For arbitrary n we define the structure A′ as follows: A′
n = ({0, . . . , n, α},⊗, n),

where α is any object outside |An| (for instance any prime number greater
than n) and ⊗ is defined as an extension of the operation × in An such that
0 ⊗ α = α ⊗ 0 = 0, 1 ⊗ α = α ⊗ 1 = α, and for each element b of A′

n different
than 0 and 1, b⊗ α = α⊗ b = n.

An easy verification shows the following

Fact 7.5. If p ≥ 2 is a prime number then Ap+1
∼= A′

p.

As we noted earlier, every formula is equivalent to some simple formula. So,
we can restrict ourselves to the formulas in that form.

The main observation is the following

Lemma 7.6. If n is such that there exists at least k primes between n and 2n
then for each simple sentence of the rank k we have that

A2n+1 |= ϕ if and only if A′
2n+1 |= ϕ.

Proof. The proof is an application of the Ehrenfeucht–Fräısse games. Note
that EF–games can be adapted to the structures with functions. One way of
this adaptation goes by a proper reformulation of the notion of the partial iso-
morphism and restriction of the language to simple formulas only.

To prove the lemma it is enough to show that in the EF–game with k moves
on structures A2n+1 and A′

2n+1 the second player has a winning strategy. That
strategy is as follows. As long as the first player does not choose from the
structure A′

2n+1 the element α, the second player answers by the same element
from the opposite structure. If the first player chooses the element α then the
second player answers by choosing any prime number from the interval (n, 2n)
which was not taken. It is possible because there are at least k primes between n
and 2n. In the next steps the second player chooses the same element from the
opposite structure with an exception for the case when the first player chooses a
prime number corresponding to α or some chosen before prime number greater
than n. In that cases the second player chooses some new prime number from
the opposite structure belonging to the interval (n, 2n). To see that such defined
strategy is a winning strategy it is enough to observe that the prime numbers
from the interval (n, 2n) are indiscernible in both structures. a

We obtain the following
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Corollary 7.7. For any set X ∈ Sp(FM ((N,×))), there are only finitely
many prime numbers q such that q + 1 ∈ X and q + 2 6∈ X.

Proof. It follows from theorem 7.4 that for arbitrary k there exists m such
that for all n > m there exist at least k primes between n and 2n. Moreover,
taking n such that 2n+1 is a prime we obtain, by fact 7.5, that A2n+2

∼= A′
2n+1.

Thus, by lemma 7.6 the same simple sentences of the rank k are true in A2n+2

and A2n+1. a
As a corollary we obtain

Corollary 7.8. The set of even numbers, PAR, does not belong to the spec-
trum of arithmetic with multiplication.

The last corollary shows that Spec(FM ((N,+))) 6⊆ Spec(FM ((N,×))). On
the other hand, from the proposition 7.3 follows that Spec(FM ((N,×))) 6⊆
Spec(FM ((N,+))). During the preparation of this paper we conjectured that if
X ∈ Spec(FM ((N,+))) ∩ Spec(FM ((N,×))) then X belongs to Sp(FM ((N))),
where (N) is the structure of the empty signature. Extending the method used
in the proof of corollary 7.7 Leszek Ko lodziejczyk proved the above conjecture.

Corollary 7.7 follows then from theorem 7.9. We decided to present both proofs
separately to give properly the credits to the results and because the proof of
corollary 7.7 is a good preparation for the proof of the next theorem.

By Fin and coF in we denote, respectively, the family of finite and cofinite
subsets of N.

Theorem 7.9 ([10]). Spec(FM ((N,+)))∩Spec(FM ((N,×))) = Fin∪ coF in
Proof. We will show that if X ∈ Sp(FM ((N,+))) and X 6∈ Fin ∪ coF in

then X does not belong to Sp(FM ((N,×))). If X is a nontrivial spectrum of
addition then there are d, n < d and M such that for all m ≥ M , md + n ∈ X
and md + n + 1 6∈ X . Let us fix such d, n and M and let k be an arbitrary
integer. We will show that no sentence ϕ ∈ F{×} with the quantifier rank k can
define the spectrum X . Obviously, that proves the theorem.

We need the following fact:

there exists a such that for infinitely many prime numbers q

aq + 1 ∈ X ∧ aq + 2 6∈ X.(*)

To prove (∗) let us define, for 0 ≤ i < d,

Si = {md+ i : m ∈ N},
and let i0 be such that Si0 contains infinitely many prime numbers. Obviously,
i0 is relatively prime with d. So, there exists b such that i0b ≡ 1 mod d. Then,
we take n′ such that n′ ≡ n− 1 mod d and 0 ≤ n′ < d. We define a = bn′. We
have that for all z = mzd+ i0, z ∈ Si0 ,

za ≡ i0a

≡ (i0b)n
′

≡ n− 1 mod d.
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Thus, for any prime q ∈ Si0 , q ≥M ,

aq + 1 ∈ X and aq + 2 6∈ X.

That proves (∗).
We will show that for each big enough prime number q, Duplicator has a

winning strategy in the k–moves Ehrenfeucht–Fräısse game on structures Aaq

and Aaq+1. So, for any sentence ϕ ∈ F{×} with the quantifier rank k, X 6= Sp(ϕ).
Let us choose a prime q such that aq + 1 ∈ X and aq + 2 6∈ X and intervals

I(aq, a) and I(aq, a − 1) (see the definition before theorem 7.4) contain more
than k prime numbers. Let us observe that prime numbers from I(aq, a) have
the same properties in Aaq as the prime numbers from I(aq + 1, a) in Aaq+1.
Namely, for each x ∈ I(aq, a),

(a+ 1)x ≥ aq and, for each i ≤ a, ix < aq.

Similarly, for each x ∈ I(aq + 1, a),

(a+ 1)x ≥ aq + 1 and, for each i ≤ a, ix < aq + 1.

An analogous fact holds for primes from I(aq, a − 1) in Aaq and primes from
I(aq + 1, a− 1) in Aaq+1.

Let {α, β} = {aq, aq + 1}. During a play of the Ehrenfeucht–Fräısse game
on the structures Aaq and Aaq+1, if Spoiler picks up an element sp from Aα,
where p ∈ I(α, a) and s ≤ a, then Duplicator can choose sp′ from Aβ , where
p′ ∈ I(β, a). During the remaining part of the game Duplicator identifies the
corresponding multiples of p in Aα and p′ in Aβ . A similar strategy is applied
when Spoiler chooses an element sp from Aα, where p ∈ I(α, a−1) and s ≤ a−1.

For any other element different than MAX Duplicator answers with the same
element from the second structure.

The only prime number which has different properties in Aaq and Aaq+1 is
q. In Aaq it behaves like any other prime from I(aq, a − 1) and in Aaq+1 it
behaves like primes from I(aq + 1, a). Indeed, I(aq, a) ∪ {q} = I(aq + 1, a) and
I(aq, a − 1) \ {q} = I(aq + 1, a − 1). However, this fact cannot be detected in
k moves of an Ehrenfeucht–Fräısse game because each of the intervals: I(aq, a),
I(aq, a−1), I(aq+1, a) and I(aq+1, a−1) has more than k primes. That shows
that Duplicator has a winning strategy in the k–moves Ehrenfeucht–Fräısse game
on structures Aaq and Aaq+1. a

Now, we turn to the arithmetic with exponentiation. Similarly as we deduced
the proposition 7.3 we can deduce from the theorem 4.9 the following.

Proposition 7.10. Let X belong to the spectrum of arithmetic with multipli-
cation. Then the set

Y = {r + 1 : ∃n ≥ 4(n ∈ X ∧ 2n−2 + 1 ≤ r ≤ 2n−1)}
belongs to the spectrum of arithmetic with exponentiation.

From theorem 4.8 immediately follows that Spec((N, exp)) ⊆ Spec((N,×)).
Now we prove that the above inclusion is strict. Let us denote A = (N,×) and
B = (N, exp). As we noted in the example 2 Spec(Φ1) = {n2 + 1 : n ∈ N} ∈
Spec(FM (A)). We will show that Spec(Φ1) 6∈ Spec(FM (B)). To prove this it
suffices to show that there is no sentence ϕ of arithmetic with exponentiation
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such that for arbitrary natural number n: An2−1 6|= ϕ and An2 |= ϕ. Indeed, let
p be a “sufficiently large” prime number. Then p2−1 = (p+1)(p−1) behaves in
Bp2 in a similar way like big prime numbers behave in models for multiplication.
For all x, y > 1, exp(x, y) 6= p2 − 1 and both: exp(x, p2 − 1) and exp(p2 − 1, x)
are greater than the maximal element of a model. Therefore, for all x, y > 1, if
exp(x, y) ≥ p2 − 1 then exp(x, y) ≥ p2. It follows that we can play Ehrenfeucht–
Fräısse game between Bp2−1 and Bp2 treating p2 − 1 in Bp2 like others prime
numbers from the upper half of Bp2 .

Thus, we have proved the following theorem.

Theorem 7.11. The spectrum of arithmetic with exponentiation is strictly in-
cluded in the spectrum of arithmetic with multiplication.

As a consequence of this theorem we can deduce that the graph of the multi-
plication function is not definable in finite models of arithmetics with exponen-
tiation. As a consequence of theorem 7.9 we have the following

Corollary 7.12. Spec((N, exp)) ∩ Spec((N,+)) = Fin ∪ coF in.

It is easy to give an example of a set in Spec(FM ((N, exp))) such that it is
not ultimately periodic. Therefore, Spec(FM ((N,+))) is not comparable with
Spec(FM ((N, exp))).

We may subsume our considerations on spectra in the following diagram. If
there is a way along the arrows from the spectrum of one arithmetic to the
spectrum of another one then the first one is strictly included in the second one.
The lack of such a way symbolizes incomparability.

Sp(FM ((N,+,×))) = LINH

Sp(FM ((N,+)))

OO

Sp(FM ((N,×)))

ggOOOOOOOOOOOOOOOOOOOOOOOOO

Sp(FM ((N, exp)))

OO

Sp(FM ((N,≤))) = Fin ∪ coF in

OO

77ooooooooooooooooooooooooo

Relations between spectra of finite arithmetics.
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§8. Conclusions and open problems. The presented research investigated
the arithmetic in a framework which is closer to the real world situation. Here we
assumed that we have only finitely many natural numbers but we did not specify
how many. In such approach arithmetics have significantly different properties
than in the infinite case.

In the first part of the paper we presented the general conditions under which
the definability in a finite arithmetic FM (A) is not stronger than the definability
in A. This is the situation when we can define in A the ordering relation. When
the ordering is not present, the arithmetics of finite models can be significantly
stronger than in the standard model. That is the case of multiplication. We
even saw that multiplication defines exponentiation in finite models. The reason
for that is that exponentiation is a fast growing function. In consequence, for
many elements a, b the value of exp(a, b) is outside of a finite model. Of course,
the same result can be proven for other fast growing functions like, e.g. 2xy

.
Both arithmetics: of multiplication and of exponentiation, are weaker than

the arithmetic of addition and multiplication. On the other hand, we saw that
with respect to FM –representability exponentiation is already equivalent to the
full arithmetic. As a consequence we obtained the undecidability of Th(FM (A))
and sl(FM (A)), where A is (N,×) or (N, exp). Recently, the same results
were proven by Mostowski and Wasilewska for the arithmetic of divisibility, see
[15]. Also the arithmetic of coprimality can interpret in finite models addition
and multiplication. An interpretation was given by Mostowski and Zdanowski in
[16]. Thus, coprimality in finite models is as hard as addition and multiplication.
Moreover, an interpretation given in [16] does not use the equality predicate.

Finally, we considered the spectrum problem. We have a partial character-
ization of the spectrum of the arithmetic with multiplication. We gave also
some examples of polynomials which range is in Sp(FM ((N,×))). A natural
question which arises is the following: for which polynomials their range is in
Sp(FM ((N,×)))?

As we observed in corollary 7.7, for any set X ∈ Sp(FM ((N,×))) it is impos-
sible that there are infinitely many prime numbers q such that q + 1 ∈ X and
q + 2 6∈ X . This can be related to the following number theoretic problem.

Let f be an irreducible polynomial satisfying the following conditions:

• f has integer coefficients with a positive leading coefficient,
• there is no prime number p such that for all n, p divides f(n).

It is conjectured that the range of f contains infinitely many primes (see [19],
section 8.4). If the latter is true then for no such polynomial f of degree greater
than one the set {f(n) + 1 : n ∈ N} is in Sp(FM ((N,×))). The last statement
can be seen as a weaker version of the mentioned number theoretic conjecture.
We can also ask whether there is an extension of the vocabulary of FM ((N,×))
such that the above two conjectures are equivalent?

From Dirichlet’s theorem follows that for relatively prime numbers a and b the
set {an+b : n ∈ N} contains infinitely many primes numbers. So, our conjecture
holds for such polynomials.

Rather than giving the complete description of arithmetics of finite models the
present paper is only a rough approximation of that aim. Definitely, more should
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be known on definability in finite models for various arithmetics. Moreover, the
dependency between properties of a family FM (A) and of the model A should be
cleared. Little is known about the theories sl(FM (A)), for various A. Obviously,
many such theories, which may be theories of the arithmetic of the physical world,
have very different properties than the theory of the, so called, standard model.
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[9] P. Hájek and P. Pudlák, Metamathematics of first–order arithmetic, Springer

Verlag, 1993.
[10] L. A. Ko lodziejczyk, Private communication.
[11] I. Korec, Elementary theories of structures containing generalized pascal trangles mod-

ulo a prime, Proc. of the 5th Conference on Discrete Mathematics and Applications,

Blagoevgrad (S. Shtrakov and I. Marchev, editors), 1995, pp. 91–105.
[12] T. Lee, Arithmetical definability over finite structures, Mathematical Logic Quar-

terly, vol. 49 (2003), pp. 385–393.
[13] M. Mostowski, On representing concepts in finite models, Mathematical Logic Quar-

terly, vol. 47 (2001), pp. 513–523.
[14] , On representing semantics in finite models, Philosophical Dimensions of

Logic and Science (A. Rojszczak†, J. Cachro, and G. Kurczewski, editors), Kluwer Academic
Publishers, 2003, pp. 15–28.

[15] M. Mostowski and A. Wasilewska, Elementary properties of divisibility in finite

models, Mathematical Logic Quaterly, vol. 50 (2004), pp. 169–174.

[16] M. Mostowski and K. Zdanowski, FM–representability and beyond, in preparation.
[17] J. Mycielski, Analysis without actual infinity, The Journal of Symbolic Logic, vol.

46 (1981), pp. 625–633.
[18] , Locally finite theories, The Journal of Symbolic Logic, vol. 51 (1986), pp. 59–

62.
[19] M. B. Nathanson, Elementary methods in number theory, Springer, 2000.
[20] W. Quine, Concatenation as a basis for arithmetic, The Journal of Symbolic Logic,

vol. 11 (1946), pp. 105–114.
[21] N. Schweikardt, On the expressive power of first-order logic with built-in predicates,

Ph.D. thesis, Johannes Gutenberg-Universität Mainz, 2001.
[22] A. L. Semenov, Logical theories of one–place functions on the set of natural numbers,

Izv. Akad. Nauk. SSSR ser. Mat., vol. 47 (1983), pp. 623–658.
[23] J. R. Shoenfield, Recursion theory, Lectures Notes in Logic, Springer–Verlag, 1993.
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