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Our account does not rob the mathematicians of their science, by dis-
proving the actual existence of the infinite in the direction of increase
[. . . ]. In point of fact they do not need the infinite and do not use it.
They postulate only that the finite straight line may be produced as far
as they wish.

Aristotle “Physics”, Book 3, part 7.
Translated by R. P. Hardie and R. K. Gaye.

In the dissertation we examine logical properties of finite arithmetics.
Finite models with built-in arithmetical relations have gained an attention
due to their ability to express concepts related to computational complex-
ity. It was shown, for example, that the logic with the fixed point operator
expresses on models with linear order exactly those properties which are
computable in deterministic polynomial time. Similarly, the transitive clo-
sure operator corresponds on finite models with order to nondeterministic
logarithmic space and just the first order logic, on finite models with addi-
tion and multiplication, describes the properties recognized by families of
polynomial size, constant depth Boolean circuits constructed in logarithmic
space (uniform AC0). In the above results we need to enriched finite models
with some arithmetical relations. And the weaker logic we consider, the
stronger set of arithmetical relations we need. In our work we look into
logical properties of such finite models arithmetics. As we will see they may
be very different from that of the infinite model.

Now, we present the basic notion of our work, the family of finite models
of a given arithmetic.

Definition 1 Let A = (ω, {Ri}i≤s, {Fi}i≤t, {ai}i≤r) and let An =
{0, . . . , n}. By FM(A) we define the family {Ai}i∈ω of the finite models
of the form

An = (An, {R
n
i }i≤s, {F

n
i }i≤t, {bi}i≤r, n),

where
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• Rn
i is the restriction of Ri to the set An

• Fn
i is defined as

Fn
i (ā) =

{

Fi(ā) if F (ā) ≤ n

n if Fi(ā) > n

• bni = ai if ai ≤ n, otherwise bni = n.

We extend the vocabulary by a constant MAX for denoting n – the maximal
element of a model An.

Very often we identify an arithemtic with the set of its relations and opera-
tions. So, we will talk e.g. about finite arithmetic of addition and multipli-
cation refering to the family FM((ω,+,×)).

We use the following symbols ≤,+,×, logt, exp for denoting the order-
ing, addition, multiplication, logarithm with the base t and two argument
exponentiation operation, respectively. We write dxe for the least integer
not less than x.

We use also the well known arithmetical hierarchy of relations. So, we
talk about Σ0

n (Π0
n) relations which are relations definable in (ω,+,×, 0, 1)

by Σ0
n (Π0

n) formulas.
In our work we consider the following questions.

1. Which infinite relations can be represented in finite models and how?

2. What are definability and interpretability dependencies between finite
arithmetics?

3. What is the recursive complexity of various theories of finite arith-
metics?

The first one of these questions is specific for our area of investigations
that is for finite models. Questions 2 and 3 were often considered in the
context of classical arithmetics of the infinite models. Thus, we may say
that they are classical problems but put in a new context.

According to the first question the problem was raised initially by Marcin
Mostowski in [Mos01] and [Mos03]. In the first of these papers M. Mostowski
considered the question how one can represent infinite relations in finite
models. He proposed there the following definitions.

Definition 2 A formula ϕ(x1, . . . , xn) is satisfied by a1, . . . , an in all suffi-
ciently large finite models from FM(A), (or in almost all finite models from
FM(A)), FM(A) |=sl ϕ[a1, . . . , an], if

∃N∀A ∈ FM(A)(card(A) ≥ N ⇒ A |= ϕ[a1, . . . , an]).
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By sl(FM(A)) we denote the family of sentences true in almost all finite
models from FM(A),

sl(FM(A)) = {ϕ : FM(A) |=sl ϕ} .

Definition 3 A formula ϕ(x1, . . . , xr) FM–represents in FM(A) a relation
R ⊆ ωr if for all a1, . . . , ar ∈ ω

(a1, . . . , ar) ∈ R ⇐⇒ FM(A) |=sl ϕ[a1, . . . , ar]

and
(a1, . . . , ar) 6∈ R ⇐⇒ FM(A) |=sl ¬ϕ[a1, . . . , ar].

A relation R ⊆ ωr is FM–representable in FM(A) if there is a formula
ϕ(x1, . . . , xr) which FM–represents R in FM(A).

One may say that relations which are FM–representable in FM(A) are
those, for which we have a good description in almost all finite models from
FM(A). M. Mostowski proved the following characterization.

Theorem 4 ([Mos01]) Let R ⊆ ωr. R is FM–representable in FM(N ) if
and only if R is ∆2 in the arithmetical hierarchy (or, in the other words, R
is recursive with some recursively enumerable oracle).

Moreover, M. Mostowski proved the following result using his finite
model version of the theorem on undefinability of truth.

Theorem 5 ([Mos01]) sl(FM(N )) is not ∆0
2–definable.

In our work we present the following methods of representing concepts
in finite models.

Definition 6 Let R ⊆ ωr. R is weakly FM–representable in FM(A) if there
exists a formula ϕ(x1, . . . , xr) such that for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R ⇐⇒ FM(A) |=sl ϕ[a1, . . . , ar].

Definition 7 Let ϕ(x1, . . . , xr) be a formula in the vocabulary of FM(A)
and let a1, . . . , ar ∈ ω. By the n-th density of ϕ[a1, . . . , ar] in FM(A),
µn(ϕ[a1, . . . , ar],FM(A)), we mean

µn(ϕ[a1, . . . , ar],FM(A)) =
card{i : i < n ∧Ai |= ϕ[a1, . . . , ar]}

n
,

By µ(ϕ[a1, . . . , ar],FM(A)) we denote, if it exists,

µ(ϕ[a1, . . . , ar],FM(A)) = lim
n→∞

µn(ϕ[a1, . . . , ar],FM(A)).

When it does not lead to any misunderstandings we omit the second para-
meter in µ(ϕ[a1, . . . , ar],FM(A)).
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Definition 8 A relation R ⊆ ωr is statistically representable in FM(A) if
there is a formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such
that for all a1, . . . , ar ∈ ω,

• there exists µ(ϕ[a1, . . . , ar],FM(A)),

• (a1, . . . , ar) ∈ R ⇐⇒ µ(ϕ[a1, . . . , ar],FM(A)) = 1,

• (a1, . . . , ar) 6∈ R ⇐⇒ µ(ϕ[a1, . . . , ar],FM(A)) = 0.

We say that the set R ⊆ ωr is weakly statistically representable in FM(A)
if there is a formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr

such that for all a1, . . . , ar ∈ ω,

• if (a1, . . . , ar) ∈ R then µ(ϕ[a1, . . . , ar],FM(A)) exists,

• (a1, . . . , ar) ∈ R ⇐⇒ µ(ϕ[a1, . . . , ar],FM(A)) = 1.

For both of the above methods we present complete characterizations
of the family of represented relations for finite arithmetic of addition and
multiplication (the first characterization is a join result with M. Mostowski).

Theorem 9 ([MZ05b]) Let R ⊆ ωr.

1. R is weakly FM–representable in FM(N ) if and only if R is Σ0
2 defin-

able.

2. R statistically representable in FM(N ) if and only if R is ∆0
2 definable.

3. R is weakly statistically representable in FM(N ) if and only if R is Π0
3

definable.

The condition for statistical representability is weaker than that for FM–
representability. Nethertheless, as we see from the second point of the above
theorem, both concepts are equivalent in FM(N ).

The method of proving the above theorems allows also to estimate the
complexity of some, semantically defined, theories of FM(N ).

Theorem 10 ([MZ05b]) 1. The set sl(FM(N )) is Σ0
2–complete.

2. The set {ϕ : µ(ϕ,FM(N )) = 1} is Π0
3–complete.

It follows from point 1 of the above theorem that sl(FM(N )) is not a com-
plete theory. We show in our work, using an ultraproduct constructions, that
there are continuum many complete consistent extensions of sl(FM(N )).

Now, we will focus on the second of the presented questions about defin-
ability and interepratability dependecies between various finite arithmetics.
The answers which we obtain will allow us to estimate the complexity of
some subarithmetics of addition and multiplication.
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There are three well known classical arithmetics: the arithmetic of ad-
dition and multiplication, the arithmetic of hereditarily finite sets with “in”
relation and the arithmetic of finite words over a finite alphabet with con-
catenation operation. All of them we can treat as arithmetics with the
universe ω consisting of the natural numbers. So, we can identify hered-
itarily finite sets, usually denoted by (Vω,∈), with the model (ω,BIT),
where BIT(x, y) holds when the x-th bit in the binary representation of
y is one. Similarly, for an alphabet Γt = {a1, . . . , at}, the infinite model for
finite words over Γt with concatenation operation can be identified with the
model (ω, ∗t, 1, . . . , t), where i is the one letter word ai and ∗t is defined as
x ∗t y = xtdlogt

(y+1)e + y. We have the following theorem.

Theorem 11 Let t ≥ 2. Each of the following models is definable in any
other:

(i) (ω,+,×, 0, 1),

(ii) (ω,BIT),

(iii) (ω, ∗t, 1, . . . , t).

Definability between (ω,+,×, 0, 1) and (ω, ∗t, 1, . . . , t) was given by
Quine. Definability between (ω,+,×, 0, 1) and (ω,BIT) is considered as
a part of logical folklore.

It turned out that the mutual definability between these arithmetics
transfers also to finite models. Barrington et al. in [BIS90] showed the
following theorem.

Theorem 12 ([BIS90]) FM((ω,+,×, 0, 1)) and FM((ω,BIT)) are mutu-
ally definable one in the other.

In our thesis we show that concatenation in finite models is as strong as
the above two arithmetics.

Theorem 13 Let t ≥ 2. FM((ω, ∗t, 1, . . . , t)) and FM((ω,+,×, 0, 1)) are
mutually definable one in the other.

We examine also some subarithmetics of addition and multiplication. In
order to compare their strength we introduce the following notion.

Definition 14 A sequence of formulas ϕ̄ is an order preserving sl–
interpretation of FM(A) in FM(B) if there exists a function f : ω −→ ω

such that

• the range of f is cofinite,

• for each i ∈ ω, f−1({i}) is finite,
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• for each n ∈ ω, ϕ̄ defines a model Af(n) in a model Bn.

The existence of the interpretation as above allow us to transfer the
properties of one family of the form FM(A) onto the other one, in which
we can interpret FM(A). We show the following theorem (obtained with
Micha l Krynicki).

Theorem 15 ([KZ05]) Let N = (ω,+,×, 0, 1) and let A be (ω,×) or
(ω, exp). There exists an order preserving sl–interpretation of FM(N ) in
FM(A).

The above theorem shows that in some way multiplication or exponentiation
are as strong as the arithmetic of addition and multiplication. This is espe-
cially suprising for the case of multiplication which is strictly weaker than
addition with multiplication in the infinite model. Nethertheless, we show
that in finite models multiplication is a relatively strong operation. More-
over, the dependecies between arithmetics may be reversed in comparison
to the infinite model.

Theorem 16 ([KZ05]) FM((ω, exp)) is definable in FM((ω,×)) but not
vice versa.

Let us recall that in the infinite model (ω, exp) defines addition and multi-
plication while in (ω,×) one cannot define addition and the theory of (ω,×)
is decidable.

As a consequence of theorem 15 we obtained the following estimation on
the complexity of theories of the families FM((ω,×)) and FM((ω, exp)) and
on classes of representable relations in these families.

Theorem 17 ([KZ05]) Let N = (ω,+,×, 0, 1), let A be (ω,×) or (ω, exp)
and let R ⊆ ωr. R is FM–representable in FM(A) if and only if R is FM–
representable in FM(N ).

Theorem 18 ([KZ05]) Let A be (ω,×) or (ω, exp).

1. The theory of FM(A) is Π0
1–complete.

2. The set sl(FM(A)) is Σ0
2–complete.

After these results were obtained M. Mostowski and A. Wasilewska
showed in [MW04] analogous results for arithmetic of divisibility. Moreover,
the author of these thesis together with M. Mostowski gave in [MZ05a] an
interpretation of FM((ω,+,×, 0, 1)) in finite arithmetic of coprimality. This
last result was presented in the thesis for information only without detailed
proofs.
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Together with M. Krynicki we estimated also the quantifier complex-
ity of formulas with multiplication for which we get an undecidable finite
model theory. Let ∃∗ be a class of formulas of the form ∃x1 . . . ∃xnψ,
where ψ is quantifier free and let ∃∗∀∗ be a class of formulas of the form
∃x1 . . . ∃xn∀z1 . . . ∀zkψ, for ψ as above.

Theorem 19 ([KZ05]) The set of ∃∗∀∗–sentences which are satisfiable in
FM((ω,×)) is Σ0

1–complete.

Theorem 20 ([KZ05]) Let A = (ω,×,≤) and let ϕ ∈ ∃∗. Then, ϕ is
satisfiable in FM(A) if and only if FM(A) |=sl ϕ.

Theorem 21 ([KZ05]) Let A = (ω,×,≤). The problems of satisfiability
in FM(A) and the problem of being true in almost all finite models from
FM(A) are decidable for ∃∗–formulas.

The proof of the above theorem is based on an estimation on the size
of a model from FM(A) in which a given ∃∗–formula has to be true, if it is
satisfiable in FM(A).

We say that a formula is in a relational form if all of its complex terms
occur in the context f(x1, . . . , xn) = z. The following estimation was given
in [KZ05].

Theorem 22 ([KZ05]) Let F (n) = exp(2, 2n+12
2

3
(4n+1−1)) + 1 and let

ϕ ∈ F{×,≤} be an ∃∗ sentence in a relational form with all variables among
x1, . . . , xn. If ϕ is satisfiable in FM((ω,×,≤)) then it has a model in
FM((ω,×,≤)) of cardinality not greater than F (n).

We close our work with a partial characterization of sets of spectra for
some finite arithmetics.

Definition 23 By an FM(A)–spectrum of the sentence ϕ we denote

SpecFM(A)(ϕ) = {n+ 1 : Ai+1 |= ϕ} .

By a spectrum of FM(A) we denote the set of FM(A)–spectra for all sen-
tences,

Spec(FM(A)) =
{

SpecFM(A)(ϕ) : ϕ ∈ FFM(A)

}

.

We show strict inclusions between spectra of the following arithmetics:
(ω, exp), (ω,×), (ω,×,≤P ), (ω,+,×), where ≤P is the ordering relation
restricted to the set of prime numbers. The first one of these inclusions is
from [KZ05].

Theorem 24

Spec((ω, exp)) ( Spec((ω,×)) ( Spec((ω,×,≤P )) ( Spec((ω,+,×)).
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