
Warsaw University
Faculty of Mathematics, Informatics and

Mechanics

Konrad Zdanowski

Arithmetics in finite but
potentially infinite worlds

Arytmetyki w skończonych,
lecz potencjalnie nieskończonych światach

Ph.D. Thesis

Thesis Advisor:
Prof. Marcin Mostowski

∀ ∃
∀ ∃

28th February 2005

Abstract

Let FM(A), for A = (ω, R̄), be the family of finite models being initial seg-
ments of A. The thesis investigates logical properties of families of the form
FM(A) for various arithmetics like arithmetic of addition and multiplication,
Skolem arithmetic of multiplication, arithmetic of coprimality, of exponen-
tiation and arithmetic of concatenation. We concentrate on questions such
as decidability of various theories of FM(A); definability and interpretability
of one arithmetic, FM(A) in another, FM(B); the problem of representing
infinite relations in such families of models and on the spectrum problem for
such arithmetics.

Following M. Mostowski ([31, 32]), we define some methods which one can
use to represent infinite relations in finite models and some natural theories of
families FM(A), such as the set of sentences true in almost all finite models
from FM(A), sl(FM(A)), or the set of sentences which are almost surely
true in FM(A) (in a probabilistic sense). We show that for A = (ω,+,×),
the first set is Σ2–complete and the second one is Π3–complete. We also
characterize relations which can be represented in both theories as exactly
∆2 relations (for the first theory such a characterization was obtained in [31]).
We show that the above remains true even in the relatively weak arithmetic
of multiplication.

We also consider various notions of definability and interpretability be-
tween arithmetics of finite models. We give the definition of FM((ω,+,×))
in the finite models of arithmetic of concatenation. This is an analogous to
the situation in the infinite models for these arithmetics but one should use
a different method to give a suitable definition.

We show that, contrary to the infinite case, arithmetic of exponentiation,
FM((ω, exp)), is definable from arithmetic of multiplication only, FM((ω,×)).
We also give interpretations of FM((ω,+,×)) in arithmetic of coprimality,
FM((ω,⊥)), and in FM((ω, exp)). The interpretations reveal that in finite
models coprimality or exponentiation are as hard as the full arithmetic of
addition and multiplication, which is especially surprising in the case of co-
primality. We also describe the decidability border for finite model arith-
metic of multiplication showing that the Σ1–theory of FM((ω,×,≤)) is de-
cidable while the Σ2–theory of FM((ω,×)) is undecidable. We close the
thesis with a partial characterization of families of spectra for FM((ω,×))
and FM((ω, exp)).

Streszczenie

Praca poświ ↪econa jest badaniu logicznych w lasności arytmetyki w skończo-
nych modelach. Arytmetyk ↪e tak ↪a charakteryzujemy jako rodzin ↪e modeli
b ↪ed ↪acych odcinkami pocz ↪atkowymi modelu A = (ω, R̄) i oznaczamy przez
FM(A). W szczególności zajmujemy si ↪e arytmetyk ↪a dodawania i mnożenia,
samego mnożenia (znan ↪a jako arytmetyka Skolema), arytmetyk ↪a konkate-
nacji, arytmetyk ↪a funkcji wyk ladniczej oraz arytmetyk ↪a relacji wzgl ↪ednej
pierwszości. Badamy stopień trudności teorii skończonych arytmetyk FM(A);
definiowalność oraz interpretowalność pomi ↪edzy takimi arytmetykami; jak
można w nich reprezentować nieskończone relacje oraz problem spektrum
dla takich rodzin.

Opieraj ↪ac sie na pracy Marcina Mostowskiego [31] definiujemy sposoby,
na jakie można reprezentować w skończonych arytmetykach nieskończone
relacje. Rozważamy FM–reprezentowalność (zdefiniowan ↪a w [31]), s lab ↪a FM–
reprezentowalność oraz reprezentowalność w sensie probabilistycznym. Ro-
zważamy także teorie zdań prawdziwych w prawie wszystkich modelach z
FM(A), oznaczan ↪a sl(FM(A)), oraz zdań, dla których prawdopodobieństwo
prawdziwości w dostatecznie dużych modelach d ↪aży do jedności. Pokazu-
jemy, że dla A = (ω,+,×) pierwsza z teorii jest Σ2 a druga Π3–zupe lna.
Pokazujemy także, że w obu teoriach można reprezentować dok ladnie relacje
∆2. Co wi ↪ecej, wyniki te pozostaj ↪a prawdziwe równiż dla arytmetyki samego
mnożenia, FM((ω,×)).

Rozpatrujemy także zwi ↪azki pomi ↪edzy skończonymi arytmetykami wzgl ↪e-
dem różnych poj ↪eć interpretowalnośći. Podajemy definicje dodawania i mno-
żenia w skończonych modelach arytmetyki konkatenacji s lów nad n elemen-
towym alfabetem, dla n ≥ 2. Pokazujemy także, że, w przeciwieństwie do
sytuacji w nieskończonej dziedzinie, funkcja wyk ladnicza exp(x, y) = xy jest
definiowalna już w skończonej arytmetyce mnożenia. Podajemy także in-
tereptacje FM((ω,+,×)) w FM((ω, exp)) a także w skończonej arytmetyce
relacji wzgl ↪ednej pierwszości, FM((ω,⊥)). Jako wniosek otrzymujemy, że
obie z tych arytmetyk arytmetyki s ↪a w skończonych modelach równie trudne
co FM((ω,+,×)). Jest to szczególnie zaskakuj ↪ace w przypadku arytmetyki
wzgl ↪ednej pierwszości.

Pokazujemy także rozstrzygalność Σ1 teorii mnożenia i porz ↪adku oraz
nierozstrzygalność Σ2 teorii tej arytmetyki.

Prac ↪e zamyka cz ↪eściowa charakteryzacja spektr dla arytmetyk
postaci FM(A).

Acknowledgements

Obviously, during all the years of writing this thesis it was influenced by
many people. Here I will try to recall the most important ones.

In the first place I want to thank my thesis supervisor, Marcin Mostowski.
He suggested investigating into the topic, was the source of inspiration and
some parts of this work were done in cooperation with him. Then I want to
thank Micha l Krynicki. We started our joint work on finite arithmetics two
years ago and since that time it has been one of the most stable scientific
relationships that I had. The thesis has also profited from the comments
made by Jurek Tomasik.

I spent many hours talking about arithmetic with Zosia Adamowicz and
Henryk Kotlarski. Although we mainly talk about nonstandard models for
Peano arithmetic and its subtheories, these conversations taught me a lot
and made the universe of arithmetical structures more familiar to me.

I also thank Ma lgosia Maciejewska and Leszek Ko lodziejczyk for correct-
ing the English of some parts of the thesis.

Last but not least I want to thank to the people at Institute of Philosophy
of Warsaw University for a good, friendly atmosphere. Among others, I am
thinking about Cezary Cieśliński, Nina Gierasimczuk, Jakub Szymanik, Ania
Wasilewska and Dominika Wojtyniak.

Contents

1 Introduction 5
1.1 Motivations . 5
1.2 Results . 7
1.3 An outline of the thesis . 9

2 Basic notions and tools 11
2.1 Formulas and models . 11

2.1.1 Ehrenfeucht–Fräısse games 16
2.2 Interpretations, reductions and definability 17

2.2.1 Interpretations . 18
2.2.2 Translation of formulas 20

2.3 Some recursion theoretic notions 21
2.3.1 Turing machines and computations 22
2.3.2 Many–one reducibilities, complete sets 23
2.3.3 Turing degrees . 24

3 Arithmetics, classical and finite models approaches 27
3.1 Arithmetics as determined by sets of primitive notions 28
3.2 Three classical arithmetical domains 29

3.2.1 ∆0 definability . 30
3.2.2 Arithmetics of hereditarily finite sets and of words . . . 32

3.3 Finite arithmetics . 35
3.3.1 ∆0 definability and definability in FM(N) 39
3.3.2 Known relations between FM(N), FM(HF) and FM(FW) 44

3.4 Concatenation defines full arithmetic in finite models 45

4 Representing concepts in finite models 63
4.1 Representing computations in finite models 63

4.1.1 Describing computations 63
4.1.2 Describing computations with oracle 65

4.2 Representing arbitrary notions in finite models 66

1

4.2.1 FM–representability 66
4.3 Characterization of sl(FM(A)) in terms of ultraproducts . . . 71

5 Other methods of representing concepts 77
5.1 Weak FM–representability . 77
5.2 Statistical representability . 81

6 Some arithmetics of finite models 85
6.1 Arithmetics with the ordering relation 86
6.2 Interpretability on initial segments 87
6.3 Undecidable arithmetics of finite models 92

6.3.1 Multiplication in finite models 92
6.3.2 Exponentiation in finite models 97
6.3.3 Coprimality in finite models 100

6.4 Decidable fragments of multiplication with order 102
6.5 Spectra of arithmetics in finite models 110

A Describing computations in finite models 115

Bibliography 121

Index 125

2

Hence this infinite is potential, never actual: the number of parts that
can be taken always surpasses any assigned number. But this number
is not separable from the process of bisection, and its infinity is not a
permanent actuality but consists in a process of coming to be, like time
and the number of time. [. . .]

Our account does not rob the mathematicians of their science, by dis-
proving the actual existence of the infinite in the direction of increase
[. . .]. In point of fact they do not need the infinite and do not use it.
They postulate only that the finite straight line may be produced as
far as they wish. It is possible to have divided in the same ratio as
the largest quantity another magnitude of any size you like. Hence,
for the purposes of proof, it will make no difference to them to have
such an infinite instead, while its existence will be in the sphere of real
magnitudes.

Aristotle “Physics”, Book 3, part 7.
Translated by R. P. Hardie and R. K. Gaye.

Chapter 1

Introduction

1.1 Motivations

This work considers logical properties of arithmetical relations in finite but
potentially infinite models. Intuitively, in such a model we can manipulate
only with finitely many integers, but we always can enlarge the number of
available entities. A mathematical framework capturing this intuition can
be obtained by considering a family of finite approximations of an infinite
model instead of considering just this infinite model.

This is similar to our situation in the real world. Without deciding
whether the world is finite or infinite, when we consider our combinator-
ial abilities, we realize that we always deal with finitely many objects. There
is no exact limit on the number of these objects but in each moment we can
access only finitely many of them. In other words, while we agree that the
successor operation can be always performed on a given integer n, we deny
that this forces the actual infinity of the set of integers. While performing
the successor operation on the maximal element of a model we may realize
that we reached the limits of our actual world and we may try to enlarge
it. This can be done either by incorporating new elements or new concepts
like sets, or sets of sets of objects. These are the ways to make a step into a
bigger but still finite model.

The motivation for investigating arithmetic in such a framework comes
from three main sources. The first one is an attempt to give a description of
computations which fits more closely to the computations which we carry out
using our machines and which incorporates the limits of our computational
abilities. In a very rough way, such a limit can be described by the condi-
tion that the number of integers we can manipulate with is finite, although
potentially infinite.

5

Let us consider an example of computing the sequence of Fibbonaci num-
bers. The sequence of Fibonacci numbers {Fi}i=0,1,2,... is defined by the fol-
lowing recursive equations:

F0 = F1 = 1,

Fi+2 = Fi + Fi+1.

Let us see, what happens if we write a program for generating Fibonacci
numbers based on the above equations. The author of this thesis has got the
following results:

F44 = 1134903170,

F45 = 1836311903,

F46 = −1323752223.

These values were obtained using variables of the type int and programming
language C. What happened here is, of course, an overflow.1 The size of F46

is bigger than the size of variables of type int. The sequence of Fibonacci
numbers grows so fast that we cannot compute numbers Fi for i ≥ 46 using
the arithmetic given by the type int. In a sense, we reached the limits of
this finite arithmetic.

A remedy for this situation is to use a type of a bigger size e.g. long
int or, better, long unsigned int, which may represent a bigger set of
integers greater than zero. However, both of these arithmetics are still finite.
Next, we may implement some data structures for manipulating even bigger
numbers. Nevertheless, still we are limited by the finite size of the memory
of our computer. We may buy some more memory chips . . .

Whatever we do we see that the arithmetic we are using is the arithmetic
of a finite world. This world may be enlarged but at each point of compu-
tation it is finite. Thus, our work describes properties of such arithmetics,
arithmetics of computers we are using.

Our second motivation comes from descriptive complexity theory and an
increasing importance of finite model theory in logic and complexity theory.
The theorems of Fagin (see [11]), Immerman and Vardi (see [18], [19], [52])
show that there is a strict correspondence between the complexity of decid-
ing a given problem and the logical formalism in which one can describe it.
Thus, instead of machines and input strings one can equivalently consider
formulas and finite models. Much of such, so called, feasible–descriptive
correspondence depends on a “built in arithmetic”– a set of arithmetical re-
lations available in finite models and treated as logical notions. For instance
NLOGSPACE – transitive closure logic correspondence assumes that models

1A carefully written program should detect such an event and signal it to a user.

6

are equipped with standard linear ordering. When we consider weaker logics
we need more arithmetic. So, alternating logarithmic time corresponds to
first order logic with built in addition and multiplication. (For these results
see [20].) Thus, investigating properties of various arithmetics in finite mod-
els also leads to a better understanding of the relation between logics and
complexity classes.

Last but not least, there is a philosophical motivation for this work which
is the old question of how we can justify the use of infinitistic methods in
mathematics and their applicability to the real world. For example we treat
time as a continuum isomorphic to the real line although there can be no
evidence for time being not discrete. It seems that assuming actual infinity
of the world is a bit risky. Especially now, when physicists try to estimate the
actual number of particles in the world. So the question arises how we can
ground our use of infinitistic methods in investigating properties of a finite
world like ours. In the context of mathematical analysis such a question was
successfully answered by Mycielski in [36] (see also [37]). He shows there how
one can reinterpret the notations and tools of analysis when we do not assume
the actual infinity of our world (which may be the real world situation) and
when all values that we can measure are rational.

In this thesis we follow the work of Marcin Mostowski (see [31], [32])
and investigate the ways in which we are able to consider infinite relations
when we are in a finite model. The aim of Mostowski was to transfer the
methods from infinite model theory, such as truth definitions, into a finite
model context (see also papers by Ko lodziejczyk, [22] and [21]). Along these
lines, we investigate which infinite families of relations can be represented in
finite models and in what sense.

We open this thesis with a quotation from Aristotle with the intention
to stress that infinity was a problem from the very beginings of science. The
ways in which we approach infinite objects, as well as their mere existence,
were questioned many times. Moreover, it is still not obvious how our use of
infinity can be helpful in recognizing properties of our finite world. Although
the present thesis does not solve these problems, it certainly contributes to
better understing of the relation between the finite and the infinite.

1.2 Results

The results of this thesis can be organized around three main themes:

1. Which infinite relations can be represented in finite models and how?

2. What is the decidability border for arithmetics of finite models?

7

3. What are interpretability dependencies between finite arithmetics?

Ad. 1 Following the definition of FM–representability (meaning Finite Model
representability) given by M. Mostowski in [31], we define three methods of
representing infinite relations in finite models: weak FM–representability,
statistical representability and weak statistical representability. We show
that the relations which can be represented by these methods are the Σ2,
∆2 and Π3 relations, respectively. Thus, the second of these methods is no
more powerful than the original FM–representability concept introduced by
Mostowski while the first and the latter allow to represent some new re-
lations, although the sense in which we can weakly statistically represent
relations is rather poor from the epistemic point of view. These results are
presented in [35]. The results related to statistical representability are of the
author of this thesis. All other results are joint with Marcin Mostowski. The
weakest known arithmetical notion sufficient for FM–representability of all
∆2 relations is divisibility (see M. Mostowski and A. Wasilewska [33]).
Ad. 2 The second topic corresponds closely with the first. Indeed, a de-
scription of the class of relations representable in a given arithmetic allows
to establish whether it is decidable or not. We show that if the standard
ordering is definable in the infinite model version of a given arithmetic, then
its finite model version can be interpreted in the infinite model. Thus, de-
cidability results carry over from the infinite model to finite models. On the
other hand, if ordering is not definable we show that even when the infinite
model arithmetic has the decidable first order theory, its finite model version
may become undecidable. The weakest arithmetic for which we know this
happens is the arithmetic of coprimality. This was proven by the author of
this dissertation and M. Mostowski, [34]. We also estimate the decidability
border for the arithmetic of multiplication showing that the ∃∗∀∗ finite model
theory of multiplication is undecidable while the ∃∗ finite model theory of
multiplication with ordering is decidable. The latter result is shown by es-
timating the size of a finite model for a ∃∗ formula. These results are joint
with M. Krynicki, [25].

We consider also the set of sentences which are true in almost all finite
models of a given arithmetic or almost surely true (in a probabilistic sense).
We show that for arithmetic of addition and multiplication the first of these
sets is Σ2–complete (a joint result with M. Mostowski) while the latter is Π3–
complete in the arithmetical hierarchy. We also give a characterization of the
first of these theories in terms of ultraproducts. Using this characterization
we show that this theory has continuum many consistent extensions.
Ad. 3 We show that the finite model arithmetic of concatenation defines
arithmetic of addition and multiplication. Thus, the former is as powerful as

8

the latter. This is a result of the author published in [25]. We also show that
exponentiation is definable in finite models by means of multiplication only.
This contrasts with the infinite model situation where exponentiation is as
powerful as addition and multiplication while sole multiplication is strictly
weaker. This is a joint result with M. Krynicki, [25].

We introduce various methods of interpreting one arithmetic of finite
models into another, such as sl–interpretability and the stronger notion of
IS–interpretability. We recall the result from M. Mostowski and Zdanowski
[34] that even the relatively weak arithmetic of coprimality can sl–interpret
addition and multiplication. We also show that multiplication or exponen-
tiation can IS–interpret addition and multiplication. In the meantime a
stronger result was obtained that divisibility relation instead of multiplica-
tion is sufficient, see M. Mostowski and A. Wasilewska [33]. As a corollary,
we obtain equality between the classes of FM–representable relations in these
arithmetics.

In principle all the theorems without references are firstly proven by the
author of this dissertation.

1.3 An outline of the thesis

In the second chapter of the thesis we present basic notions like first order in-
terpretations, Ehrenfeucht–Fräısse games, and some concepts from recursion
theory needed in this work.

The third chapter introduces three classical arithmetics: of addition and
multiplication, of words with concatenation, and of hereditarily finite sets
with the “belongs to” predicate. Then, for a given infinite model on natural
numbers A = (ω,R), we define the family, FM(A), of finite models which
are finite initial segments of A. The main result of this chapter is that the
finite arithmetic of words with concatenation is as powerful in finite models
as the two others classical arithmetics mentioned above.

In the fourth chapter we introduce the notion of FM–representability, fol-
lowing M. Mostowski [31, 32]. This concept was designed to enable express-
ing in finite models the notions which were originally used in infinite model
theory, e.g. truth definitions. A (possibly infinite) relation R ⊆ ωr is FM–
represented in FM(A) by a formula ϕ if each finite fragment of R is correctly
described by ϕ in almost all finite models from FM(A). It was shown in [31]
that exactly the ∆2 relations are FM–represented in FM((ω,+,×,≤)). More-
over, if the relation of truth between finite models from FM(A) and formulas
is decidable, then no relation outside ∆2 can be FM–represented in FM(A).
At the end of the chapter we give a characterization of the set, sl(FM(A)), of

9

sentences true in almost all models from FM(A) in terms of ultraproducts.
Using this characterization we show that sl(FM(N)) has continuum many
consistent extensions.

In the fifth chapter, we introduce some other methods of representing
infinite relations in finite models: weak FM–representability and statistical
representability. We describe the semantical power of these methods and, as
a consequence, we characterize the complexity of some theories of the family
FM((ω,+,×)). Namely, we estimate the complexity of determining whether
a given sentence is true in almost all models from FM((ω,+,×)) or whether
it is almost surely true (in a probabilistic sense).

The sixth chapter considers arithmetics which are weaker than the arith-
metic of addition and multiplication, mainly arithmetics of multiplication, of
exponentiation and of coprimality. We show that in finite models all of them
can interpret addition and multiplication, although they are semantically
weaker than FM((ω,+,×)). As a consequence, we obtain that all of them
have Π1–complete sets of finite model tautologies, unlike in the infinite case
where multiplication and coprimality are decidable. Further, we show that
in finite models multiplication defines exponentiation. Then, we estimate the
decidability border for multiplication with ordering. We show that the ∃∗∀∗

theory of multiplication with ordering is undecidable in finite models and
that this result is optimal. We end the chapter by proving strict inclusions
between spectra of the above arithmetics. Nevertheless, the complexity of
spectra of formulas with multiplication is equal to the complexity of spectra
of formulas with addition and multiplication. This means that each set in
the spectrum of FM((ω,+,×)) is linearly reducible to a set in the spectrum
of FM((ω,×)).

10

Chapter 2

Basic notions and tools

In this chapter we fix logical background for our work. In the first section
we discuss the basic logical notions. Then, we present the concept of inter-
pretability which is one of the main tools in proving logical relations between
various arithmetics. Finally, we discuss some recursion–theoretic notions
which are used in some parts of our work in an essential way.

2.1 Formulas and models

We write ω for the set of natural numbers {0, 1, 2, . . .}. For a function f
dom(f) is the domain of f and rg(f) is the range of f . For a function
f : A −→ B and a sequence of elements ā = a1, . . . , ak ∈ Ak we write
~f(ā) for the sequence f(a1), . . . , f(ak). We write [a, b] for the set of inte-
gers {a, a+ 1, a+ 2, . . . , b− 2, b− 1, b}.

By a vocabulary we mean a 4-tuple (P,F,C, ar), where P is the set of
predicates, F is a set of functions symbols, C is the set of constants and
ar : P ∪ F −→ ω is the arity function. We assume that all three sets: P, F

and C are disjoint. Vocabularies will be denoted by Greek characters σ, τ
etc.

Each vocabulary σ = ({Pi}i≤s, {fi}i≤t, {ci}i≤r, ar) determines the set of
terms and formulas in σ. Var = {x1, x2, x3, . . .} is the set of variables. Vari-
ables are denoted also by: x, y, z, . . ., possibly with indexes. The sets of
terms, Trmσ, and formulas, Fσ, for a given vocabulary σ are defined induc-
tively. All variables and constants belong to Trmσ and for each function
symbol fi and t1, . . . , tar(fi) ∈ Trmσ, f(t1, . . . , tar(fi)) ∈ Trmσ. We call a term
t simple if it has only one occurrence of a function symbol that is all its
arguments are variables or a constants.

An atomic formula is an expression of the form t = t′ or Pi(t1, . . . , tar(Pi)),

11

where t, t′, t1, . . . , tar(Pi) ∈ Trmσ and i ≤ s. The set of formulas Fσ includes
all atomic formulas and for each ϕ, ψ ∈ Fσ, p¬ϕq ∈ Fσ and p(ϕ⇒ ψ)q ∈ Fσ.
Finally, for each variable x and ϕ ∈ Fσ, p∀xϕq ∈ Fσ. The other propositional
connectives: ∧,∨,⇔, are introduced via their usual definitions in terms of
negation and implication. The same convention is applied to the existential
quantifier, ∃. We write Qx for a universal or existential quantifier binding
the variable x.

If there is no occurrence of a quantifier in ϕ we say that ϕ is quantifier free.
We define the quantifier rank of a formula by induction on the complexity of
ϕ. For atomic formulas ϕ, qr(ϕ) = 0. qr(¬ϕ) = qr(ϕ) and for ϕ = pψ ◦ γq,
qr(ϕ) = max(qr(ψ), qr(γ)), where ◦ ∈ {∧,∨,⇒,⇔}. Finally, qr(∀x ϕ) =
qr(∃x ϕ) = qr(ϕ) + 1.

We write Trm{X1,...,Xk} and F{X1,...,Xk} for the set of terms and formulas,
respectively, in the vocabulary consisting of X1, . . . , Xk predicates, function
symbols and constants. In this case the arity function should be obvious
from the context or should not play an important role in a given reasoning.

We distinguish some subclasses of Fσ. By Q∗, where Q ∈ {∃, ∀}, we mean
the set of quantifier prefixes of the form

Qz1 . . . Qzk.

Then for two sets of such prefixes K1 and K2, K1K2 is the set of prefixes
which can be formed by concatenation of a prefix from K1 with a prefix from
K2. With each such class K we associate the class of formulas which begins
with a prefix from K followed by a quantifier free formula. Thus, ∃∗∀∗ is the
set of prefixes of the form

∃z1 . . . ∃zk∀y1 . . .∀yn

and the set of formulas of the form

∃z1 . . .∃zk∀y1 . . .∀yn ψ,

where ψ is a quantifier free formula. Later we introduce also Σn and Πn

families of arithmetical formulas, see subsection 3.2.1.
By an inductive construction of ϕ we mean a sequence of formulas

(ϕ1, . . . , ϕk) such that ϕk is ϕ and for each i ≤ k, ϕi is an atomic formula
or it is constructed from formulas occurring earlier in the sequence by appli-
cation of a construction rule for a propositional connective or a quantifier.
If a formula ψ occurs in every inductive construction of a formula ϕ we say
that ψ is a subformula of ϕ. An occurrence of a variable xi is bounded in ϕ
if there is a subformula of ϕ of the form Qxiψ and this occurrence of xi is

12

within this Qxiψ. Otherwise, an occurrence of xi is free in ϕ. A variable xi is
free in ϕ if it has a free occurrence in ϕ. The set of all free variables of ϕ will
be denoted as Free(ϕ). If the formula ϕ has no free variables, (Free(ϕ) = ∅)
then it is called a sentence. We will write ϕ(xi1 , . . . , xik) to indicate all free
variables of ϕ. In this case Free(ϕ) ⊆ {xi1 , . . . , xik}.

A formula ϕ is in a relation–like form if all its atomic subformulas are of
the form Pi(z1, . . . , zar(Pi)), fi(z1, . . . , zar(fi)) = z0 or z1 = z2, where all the z’s
are variables or constants. It can be proven by induction on the complexity
of a formula that for every formula ϕ(z1, . . . , zk) one can effectively find an
equivalent formula ψ(z1, . . . , zk) in a relation–like form.

Now we fix some conventions concerning the semantic for first order logic.
By a model A for a vocabulary σ as above we mean a tuple

A = (A, {Ri}i≤s, {Fi}i≤t, {ai}i≤r}),

where A is a nonempty set — the universe of A, denoted also by |A|,
Ri ⊆ Aar(Pi) are relations on the universe of A interpreting the correspond-
ing predicates of σ, Fi : A

ar(fi) −→ A are operations on A interpreting cor-
responding function symbols and ai ∈ A are elements of universe which
interpret constants of σ. The cardinality of A is the cardinality of its uni-
verse, i.e. card(A) = card(|A|). The class of all models for σ is denoted by
Modσ. We also extend the arity function ar from vocabularies to relations
and functions of a model A ∈ Modσ. Namely, ar(Ri) = ar(Pi), where Ri is
the relation corresponding to the predicate Pi and, similarly, ar(Fi) = ar(fi).

For a relation R ⊆ Xr, the restriction of R to a set Y ⊆ X is the relation

R|Y = {(a1, . . . , ar) ∈ R : (a1, . . . , ar) ∈ Y r}.

By the restriction of a function F : Xr −→ X to a domain Y ⊆ X we mean
the function F|Y : Y r −→ X such that F|Y (a1, . . . , ar) = F (a1, . . . , ar), for all
(a1, . . . , ar) ∈ Y r.

By a submodel of A we denote the model B of the same vocabulary such
that the universe of B is a subset of the universe of A and the relations
(resp. operations) of B are restrictions of the corresponding relations (resp.
operations) of A to |B|. Moreover, interpretations for constants in B are the
same as in A. Let us observe that in this case |B| has to contain all the
constants from A and has to be closed on the operations from A. If X ⊆ |A|
then by a restriction of A to X, A|X we denote the submodel of A with the
universe X, assuming that this restriction is properly defined.

A valuation a in a model A is a function from the set of variables of
σ into the universe of A. By a(xi/b) we denote the valuation a′ such that
a′(xj) = a(xj) for j 6= i and a′(xi) = b.

13

We extend a to a : Trmσ −→ A denoted by the same symbol and defined
by conditions:

• a(ci) = ai, for all constants ci from σ,

• a(fi(t1, . . . , tar(fi)) = Fi(a(t1), . . . , a(tar(fi))), for all functions fi from σ.

The satisfaction relation, |=, for a vocabulary σ is a relation between
models, formulas and valuations. For a given A ∈ Modσ, ϕ(xi1 , . . . , xik) ∈ Fσ

and a, a valuation in A, A |= ϕ(xi1 , . . . , xik)[a] is defined by induction on a
construction of ϕ. The basic cases are:

• A |= (t = t′)[a] if ā(t) = a(t′),

• A |= Pi(t1, . . . , tar(Pi))[a] if (a(t1), . . . , a(tar(Pi))) ∈ Ri.

For complex formulas we have:

• A |= ¬ϕ[a] if A 6|= ϕ[a],

• A |= (ϕ⇒ ψ)[a] if A 6|= ϕ[a] or A |= ψ[a].

• A |= ∀x(ϕ)[a] if for all b ∈ |A|, A |= ϕ[a(x/b)].

If A |= ϕ[a] then we will say that ϕ holds in A under a.
It can be proven by induction on a construction of a formula ϕ, that if

two valuations a and a′ agree on the free variables of ϕ then A |= ϕ[a] if
and only if A |= ϕ[a′]. Thus, for ϕ(xi1 , . . . , xik) it is meaningful to write
A |= ϕ[a1/xi1 , . . . , ak/xxik

], or just A |= ϕ[a1, . . . , ak], for expressing that ϕ
holds in A under any valuation which maps xij to aj for j = 1, . . . , k. In
this case we say that ϕ is satisfied in A by a1, . . . , ak. When ā and z̄ are
sequences of equal length of elements of |A| and variables respectively, we
write also A |= ϕ[ā/z̄] with the obvious meaning.

The set of all sentences true in A is the theory of the model A and is
denoted by Th(A). By A ≡ B we express that Th(A) = Th(B). Similarly,
if A and B satisfy the same sentences in a relation-like form of a quantifier
rank ≤ k, we write A ≡k B.

Definition 2.1 Let A = (A, {Ri}i≤s, {Fi}i≤t, {aci}i≤r) be a model, x̄ and ȳ
sequences of pairwise distinct variables x1, . . . , xk and y1, . . . , yl, respectively.
Let ϕ(x̄, ȳ) be a formula in the vocabulary of A such that Free(ϕ) ⊆ {x̄, ȳ}
and let ā = a1, . . . , al be a sequence of elements from A. By ϕA,ā,x̄ we denote
the set

ϕA,ā,x̄ = {(b1, . . . , bk) ∈ Ak : A |= ϕ[b1, . . . , bk, ā]}.

14

ϕA,ā,x̄ is called the relation definable by ϕ(x̄, ȳ) in A with parameters ā,
where we treat ā as a finite valuation {(yi, ai) : i = 1, . . . , l}. When the
sequence x̄ is clear from the context or inessential for our considerations,
and similarly the sequence ā, we write ϕA.

Let us observe, that the relation ‘definable by a formula ϕ’ depends on
variables x̄. In particular some variables in x̄ may not occur in ϕ.

Having defined semantics we describe what it means for two formulas to
be equivalent. Formulas ϕ(x1, . . . , xk) and ψ(x1, . . . , xk) are equivalent if for
each model A of the vocabulary containing all non logical symbols of both ϕ
and ψ ϕA,x̄ = ψA,x̄, where x̄ = x1, . . . , xk is the sequence containing all free
variables of ϕ and ψ.

Let A = (A, {RA
i }i≤s, {FA

i }i≤t, {aci}i≤r) and B = (B, {RB
i }i≤s, {FB

i }i≤t,
{bci}i≤r) be models of the same vocabulary. An isomorphism between A and
B is a bijection f : |A| −→ |B| such that

• For each i ≤ s and for each ā = a1, . . . , aar(RA
i) ∈ |A|,

RA
i (ā) ⇐⇒ RB

i (~f(ā)).

• For each i ≤ t and for each a ∈ |A| and ā = a1, . . . , aar(FA
i),

FA
i (ā) = a ⇐⇒ F B

i (~f(ā)) = f(a).

• For each i ≤ r, f(aci) = bci .

Let g be a partial injection between |A| and |B| and let g′ = g∪{(aci, bci)}i≤r
fulfill the above three conditions restricted to the dom(g′). Then we say that
g is a partial isomorphism between A and B.1 If g is an isomorphism between
A and the restriction of B to the rg(g) then g is an embedding of A into B.

Let ≈ be an equivalence relation onX. We write [a]/≈ for an ≈–equivalence
class of a ∈ X. When the equivalence relation is clear from the context we
omit the subscript and write [a]. The set of all ≈–equivalence classes of
elements in X is denoted by X/≈.

Let ≈ be an equivalence relation on an universe of a model A = (A, {Ri}i≤s,
{Fi}i≤t, {aci}i≤r). We say that ≈ is a congruence relation on A if:

• for each i ≤ s and for each ā = a1, . . . , aarity(Pi) ∈ |A|,
b̄ = b1, . . . , bar(Pi) ∈ |A| such that aj ≈ bj for j ≤ ar(Pi) we have:

(ā) ∈ Ri if and only if (b̄) ∈ Ri,

1Let us observe that in the second condition we have to require that the value of FA
i (ā)

is in the domain of g′.

15

• for each i ≤ t and for each ā = a1, . . . , aar(fi) ∈ |A|,
b̄ = b1, . . . , bar(fi) ∈ |A|,

if aj ≈ bj for j ≤ ar(fi) then Fi(ā) ≈ Fi(b̄).

Let us observe that equality is always a congruence relation for any model
A.

Definition 2.2 Let A ∈ Modτ and let ≈ be a congruence relation on A.
Then we define the model

A/≈ = (A/≈, {Ri/≈}i≤s, {Fi/≈}i≤t, {[aci]/≈}i≤r),

where the universe of A/≈ is the set of all ≈–equivalence classes,

Ri/≈ = {([a1]/≈, . . . , [aar(Ri)]/≈) : (a1, . . . , aar(Ri)) ∈ Ri},

and
fi/≈([a1]/≈, . . . , [aar(fi)]/≈) = [fi(a1, . . . , aar(fi))]/≈.

The correctness of the above definition essentially depends on the second
condition in the definition of the congruence relation.

2.1.1 Ehrenfeucht–Fräısse games

In this section we describe one of the main tools in model theory, especially
in finite model theory, namely, Ehrenfeucht–Fräısse games or EF–games for
short. Fräısse defined this concept in an algebraic setting (see [13]), and
later Ehrenfeucht presented a more intuitive and equivalent game–theoretic
approach, see [10]. EF–games can be used for proving expressibility as well
as non expressibility results for first order logic. For a detailed treatment of
Ehrenfeucht–Fräısse games we refer to [9].

An EF–game is played by two players which we call Ares and Eros2 on two
structures A0,A1 ∈ Modτ . Ares tries to show that A0 and A1 are different
and Eros tries to show that they look alike. Each game has a predetermined
number of rounds. In each round of the k-round game Ares chooses one
structure, let it be A0, and an element a ∈ |A0|. Then, Eros chooses an
element b from the other structure, that is b ∈ |A1|. The output of the round
is the the ordered pair 〈a, b〉 ∈ |A0| × |A1|. After k rounds, we obtain the set

F = {〈a1, b1〉, . . . , 〈ak, bk〉} ⊆ |A0| × |A1|.
2In the literature they are also called Abelard and Heloise, Adam and Eva, or Player

I and Player II; or Player II and Player I.

16

We say that Eros wins the game if F is a partial isomorphism between A0

and A1.
3 Otherwise, Ares wins. Moreover, if Eros can win each k-round

game on A0 and A1 then we say that he has a winning strategy in the k–
round game and we express this fact by A0 ∼k A1. The following theorem
shows the relation between EF–games and first order logic.

Theorem 2.3 (Ehrenfeucht [10], Fräısse [13]) Let σ be a finite vocabu-
lary and let A,B ∈ Modσ. For each r ∈ ω the following are equivalent:

1. A ∼r B.

2. A ≡r B, that is A and B satisfy exactly the same sentences in a
relation–like form of quantifier depth ≤ r.

The next fact presents one of the most popular introductory examples of
an application of Ehrenfeucht–Fräısse games. We use it later in this section.

Fact 2.4 Let ≤i be the standard ordering on natural numbers restricted to
the set {0, . . . , i} and let A = ({0, . . . , m},≤m) and B = ({0, . . . , n},≤n). If
n,m ≥ 2r, then A ≡r B.

The proof of this fact is given usually by an explicit definition of a winning
strategy for Eros and it can be found in many introductory textbooks, e.g.
[9] or [17].

2.2 Interpretations, reductions and definabil-

ity

In this section we introduce one of the basic tools used in our work, namely,
interpretations. It was applied in the work of Tarski for proving decidability
and undecidability of mathematical theories, see [30] or [50]. The method was
codified by Szczerba in [48] and [49]. In his works a purely model–theoretic
notion of interpretations was for the first time formulated in the general
setting. Interpretations were later rediscovered by finite model theorists, see
[7] or [27] for interpretative reductions and logical reductions, respectively.
Let us stress an important difference between interpretations and reductions.
An interpretation ϕ̄ of one class of models K1 in antoher one K2 is a reduction
of K2 to K1. In the finite model theory interpretations provide a natural and
reasonably subtle method of reducing one class of finite models to another

3Let us remind that according to the definition of a partial isomorphism we have to
consider F extended by a set of pairs of corresponding constants from two structures.

17

one. It turned out that many complete problems for various complexity
classes such as LOGSPACE or NPTIME remain complete also under this
form of reductions, see [20].

2.2.1 Interpretations

A first order interpretation of models for a vocabulary σ in models for a
vocabulary τ is determined by a sequence of formulas of vocabulary τ in the
following sense. Let σ = ({Pi}i≤s, {fi}i≤t, {ci}i≤r, ar) and let

ϕ̄ = (ϕU , ϕ≈, {ϕPi
}i≤s, {ϕfi

}i≤t, {ϕci}i≤r)

be the sequence of formulas from Fτ such that Free(ϕU) ⊆ {x1, . . . , xn},
Free(ϕ≈) ⊆ {x1, . . . , x2n}, Free(ϕRi

) ⊆ {x1, . . . , xn(ar(Ri))},
Free(ϕfi

) ⊆ {x1, . . . , xn(ar(fi)+1)} and Free(ϕci) ⊆ {x1, . . . , xn}.4

Let A ∈ Modτ . We write ϕA
Pi

for a relation defined by ϕPi
in A, with

respect to variables x1, . . . , xn(ar(Pi)). A similar convention is applied for other
formulas in ϕ̄, e.g. ϕA

U is a subset of An.
At the first step, we construct a model B′ in a relational vocabulary

corresponding to σ,

B′ = (ϕA
U , {ϕA

Ri
∩ (ϕA

U)ar(Pi)}i≤s, {ϕA
fi
∩ (ϕA

U)ar(fi)+1}i≤t, {ϕA
ci
∩ (ϕA

U)}i≤r).

Now let us assume that the relation ϕA
≈ restricted to the universe of B′ is

a congruence relation in B′. For brevity, we denote this relation by ≈. Then
we define the model B as B′

/≈
with the modification that we treat (ϕA

ci
∩ϕA

U)/≈
not as one element sets but as elements of the universe. Thus, we have to
require that (ϕA

ci
∩ ϕA

U)/≈ is a singleton, for each i ≤ r. Moreover, since we
want B to be a model in a vocabulary σ, then (ϕA

fi
∩ ϕA

U)/≈ should define a
graph of a function, for each i ≤ t.

More precisely,

B = (B, {Ri}i≤s, {Fi}i≤t, {di}i≤r),

where

• B = ϕA
U/≈

;

• for each i ≤ s, Ri = (ϕA
Ri

∩ (ϕA
U)ar(Pi))/≈;

4We do not define here interpretations with parameters because we do not need them
in our work.

18

• for each i ≤ t, Fi = (ϕA
fi
∩ ϕA

U)ar(fi)+1)/≈ is a graph of a function from

Bar(fi) into B;

• for i ≤ r, di is the unique ≈–equivalence class of elements in ϕA
ci
∩ ϕA

U .

We say that B constructed in this way is defined by ϕ̄ in A.
Since logic does not distinguish between isomorphic models, we say that

B is defined by ϕ̄ in A also when B ∼= Iϕ̄(A).

Definition 2.5 (Interpretation) Let τ , σ and ϕ̄ be as above. An interpre-
tation Iϕ̄ of Modσ in Modτ is a partial functor with the domain dom(Iϕ̄) =
Modτ and the range rg(Iϕ̄) ⊆ Modσ.

Then, Iϕ̄(A) is the model defined by ϕ̄ in A.
The interpretation Iϕ̄ is determined by formulas in ϕ̄; therefore we use

the term interpretation also for ϕ̄.

Let us observe that it may happen that ϕ̄ does not define a model Iϕ̄(A)
in a given A ∈ Modτ . Firstly, ϕA

≈ may not be a congruence relation in B′.
Secondly, the sets {Fi}i≤t or {di}i≤r may not be properly defined. Therefore,
considering any property of models Ψ(.), we interpret Ψ(Iϕ̄(A)) as ∃B (B =
Iϕ̄(A)∧Ψ(B)), where the assumption of existence of Iϕ̄(A) is explicitly stated.

In the following picture we illustrate the interpretation ϕ̄ of a family of
models K1 in K2. The arrow indicates the direction in which the interpre-
tation acts. It takes a model M from K2 and constructs a model from K1,
Iϕ̄(M). As we noted, the function given by the interpretation may be not
total.

It is often convenient to consider an interpretation ϕ̄ as acting from K1

into K2. Then for a given model N1 from K1 we look for a model N2 in
K2 such that ϕ̄ defines in N2 a model isomorphic to N1. In such a case,
N2 may be not determined uniquely. However, in this thesis, we consider
interpretations as acting from K2 into K1.

19

K1

r r

Iϕ̄(M) M

9

K2

Picture 2.1 An interpretation ϕ̄ of K1 in K2.

Now we define some variations of the original concept.

Definition 2.6 Let σ, τ and ϕ̄ be as above and assume that ϕ≈ is just the
identity relation on n–tuples.

An interpretation ϕ̄ is simple if n = 1, otherwise it is n-cartesian. An
interpretation is entire if ϕU is a tautology. If an interpretation is simple,
entire and parameter free we say that it is exact.

Let A ∈ Modτ and B ∈ Modσ and let ϕ̄ define B in A. If ϕ̄ is simple we
say that B is simply definable in A. Similar convention applies for ϕ̄ being
a entire or exact interpretation.

2.2.2 Translation of formulas

Let ϕ̄ be a sequence defining an n–cartesian interpretation of Modσ in Modτ
and let A ∈ Modτ .

We establish a correspondence between relations definable in models Iϕ̄(A)

and A. Firstly, we define the translation function Îϕ̄ : Fσ −→ Fτ .
We introduce the following notation: for xi by x̃i we denote the sequence

x(i−1)n, . . . , xin. Similarly, for a constant ci, c̃i is zci1 , . . . , z
ci
n , the sequence of

new variables. If z̄ is a sequence of variables and constants z1, . . . , zk and
Q ∈ {∃, ∀}, we write Qz̄ for Qz1 . . . Qzk.

We define an auxiliary operation ? by induction on ψ ∈ Fσ. We assume
that ψ is in a relation–like form.

• If ψ = pxl = xjq then ψ? = pϕ≈(x̃l, x̃j)q.

• If ψ = pPi(xj1, . . . , xjar(Pi)
)q then ψ? = pϕPi

(x̃j1 , . . . , x̃jar(Pi)
)q.

20

• If ψ = pfi(xj1 , . . . , xjar(fi)
) = xlq then

ψ? = p∃x̃w(ϕfi
(x̃j1 , . . . , x̃jar(fi)

, x̃w) ∧ ϕ≈(x̃w, x̃l))q,

where xw is a new variable.

• If ψ = p(γ ⇒ θ)q then ψ? = p(γ? ⇒ θ?)q.

• If ψ = p¬γq then ψ? = p¬γ?q.

• If ψ = p∀xjγ(x)q then ψ? = p∀x̃j(ϕU(x̃j) ⇒ (γ(x̃j))
?)q.

In each point we make the following proviso:

If a variable xi is free in ψ and some variables in x̃i would be
bounded in ψ? by a quantifier in a formula ϕ from ϕ̄ then we
rename bounded variables in ϕ so that variables x̃i remain free in
ψ?.

We obtain for a given ψ(x1, . . . , xk) a formula ψ?(x̃1, . . . , x̃k, c̃1, . . . , c̃r),
where c1, . . . , cr is the list of constants from σ. To finish the translation we
need to quantify out these constants.

Îϕ̄(ψ) = ∃c̃1 . . .∃c̃r(
∧

1≤i≤r

(ϕci(c̃i) ∧ ϕU(c̃i)) ∧ ψ?(x̃1, . . . , x̃k, c̃1, . . . , c̃r)).

The key property of the above translation is the following

Proposition 2.7 Let ϕ̄ be an interpretation of Modσ in Modτ , A ∈ Modτ
and let ψ(x1, . . . , xk) ∈ Fσ. Then, for each a1, . . . , ak ∈ |Iϕ̄(A)|,

Iϕ̄(A) |= ψ[a1, . . . , ak] ⇐⇒ A |= Îϕ̄(ψ)[a′
1, . . . , a

′
k],

where a′
i is an arbitrary n–tuple from the equivalence class of ai.

The proof can be given by a straightforward induction on a construction
of ψ (see e.g. [17]).

2.3 Some recursion theoretic notions

Now we describe briefly the recursion theoretic concepts used in this thesis.
All the notions and facts stated in this section are fairly standard and can be
find in many textbooks. We give the brief overview of them, without giving
proofs, just to fix the notation.

We use in this section some concepts from subsection 3.2.1 concerning the
Σn classes of arithmetical formulas and relations definable by such formulas.

21

2.3.1 Turing machines and computations

Let A = {a1, . . . , ak} be a finite alphabet. A word over the alphabet A is a
finite sequence of elements from A. The unique empty word is denoted by λ
and A∗ will be the set of all words over A. By a language L we mean any
subset of A∗.

A Turing machine H is a tuple (Q,Σ,Γ, δ, qS, qA), where Q is a finite set of
states of H , qS, qA are the starting and accepting states, respectively, Σ and
Γ are alphabets of the language of H and of the work tape, respectively and
δ is a function (possibly partial) from Q \ {qA} × Γ into Q× Γ × {L, S,R}.5

We assume that the work tape of the machine is unbounded to the right
and bounded to the left, Σ ⊆ Γ and Γ − Σ contains two special symbols: α
which is written on the leftmost square of the tape, and β which is the blank
symbol. We assume that H never tries to go to the left from α or to write
on a square containing α.

The computation of H on a word w ∈ Σ∗ starts in the state qS when w
is written on the work tape next to α and the head of H reads the leftmost
letter of w. The rest of the tape is filled with β’s.

During the computation H makes moves according to the function δ, its
present state and the symbol scanned on the working tape. If, for example,
H is in the state q, reads the symbol c and δ(q, c) = (p, d, L) then H enters
into the state p, writes d on the tape and moves its head one square to the
left. If during the computation on the word w H is in a situation for which
the transition function is not defined then we say that H halts of w. If H
halts in the state qA then we say that H accepts w. The set of all words
from Σ∗ accepted by H is called the language of H and is denoted by L(H).
Similarly, WH is the set of all words on which H stops.

There are several possible variations in the definition of Turing machine.
One can allow a two way unbounded working tape or several working tapes;
also the function δ may take as values subsets of Q × Γ × {L, S,R} etc.
However, it turns out that all these modifications do not change the family
of languages recognizable by Turing machines. Nevertheless, they play a
significant role when we consider the amount of resources, such as space or
time, which are used during a computation performed by a machine H .

We say that a set X ⊆ Σ∗ is decidable if there is a Turing machine H
which halts on every input and which accepts exactly words from X. In such
a case H is said to decide X. X is recursively enumerable (RE for short) if
there is a Turing Machine which accepts exactly the words from X. There is

5The letters L, S, R code the move of the head of the machine with the mnemonic
meaning: left, stop, right. Moreover, we assume that there is no further move when a
Turing machine enters the accepting state.

22

a number of equivalent characterizations of RE sets. E.g. X is RE if and
only if there is a Turing machine which halts exactly on the words from X.
We can characterize decidable sets by the following property: X is decidable
if and only if both X and A∗ \X are RE.

Let R ⊆ ωr. We may code R as a language over a two letter alphabet
{0, 1}. Let bin(u) be the word being the binary representation of an integer
u (without leading 0’s) and let, for a word v = v1, . . . , vk with vi ∈ {0, 1},
d(v) := v1v1v2v2 . . . vkvk. By L(R) we mean the language

{d(bin(u1))010d(bin(u2))010 . . . 010d(bin(ur)) : (u1, . . . , ur) ∈ R}.

Then by definition, R ⊆ ωr is RE if L(R) is RE and, similarly, R is decidable
if L(R) is decidable. In what follows when we talk about some computational
properties of relations over natural numbers we always assume that these
relations are given by some coding function. In particular, if we write that
H accepts a tuple (a1, . . . , ak) ∈ ωk, we mean that H accepts the code of
this tuple in some fixed coding. The coding given above is suitable for all
our purposes.

The coding of relations on ω we have just introduced allows us to connect
the notions of decidability and recursive enumerability with the notion of
arithmetical hierarchy, see subsection 3.2.1. Namely, R ⊆ ωr is RE if and
only if R is definable in N by a Σ1 formula of arithmetic. Similarly, R is
decidable if and only if R is definable in N by Σ1 and Π1 formulas.

2.3.2 Many–one reducibilities, complete sets

So far we considered machines which answer only yes or no on a given input.
Now we modify our notion of computability to include machines which com-
pute functions. Let f be a function, possibly partial, from ωk into ωm. We
say that a Turing machine H computes f if for each a ∈ ωk,

• H halts for the input a if and only if a ∈ dom(f).

• If a ∈ dom(f) then the word written on the work tape after the last
step of the computation of H with the input a is the code of f(a).

A function f is recursive if there is a Turing machine which computes f .
Now we can describe our first notion of relative computability. Let R ⊆

ωk, S ⊆ ωr. We say that R is many-one reducible to S, R ≤m S, if there
is a total recursive function f such that for each a ∈ ωk, a ∈ R if and
only if f(a) ∈ S. The relation ≤m is reflexive and transitive. It follows
that the relation defined as R ≤m S ∧ S ≤m R is an equivalence relation. It

23

is denoted by R ≡m S. Let us observe that the empty set and ω form two
distinct equivalence classes under ≡m.

Let K ⊆ P(ω) and R ⊆ ω. We say that R is K–complete via many-one
reductions if R ∈ K and for each S ∈ K, S ≤m R. For each n, the families
Σn and Πn contain complete sets. Moreover, these sets can be described in
a natural way as sets of indexes of Turing machines having some property,
e.g. the set of Turing machines which compute functions with finite domain
is Σ2–complete.

Now we introduce sets complete for some classes of relations which will
be usefull for us later.

Each Turing machine can be described by a finite word in a fixed alphabet,
e.g. {0, 1}. Since we can identify such words with natural numbers, see
section 3.2.2, it follows that we can identify a given Turing machine H with
a natural number cH which is called a code of a machine H . Subsequently,
we write H to denote both: a Turing machine and its code. Indeed, for
purposes of this thesis we can think of Turing machines just as they were
natural numbers.

Definition 2.8 By Fin ⊆ ω we denote the set of Turing machines which
have finite domains i.e.

Fin = {H : WH is finite}.

By CoInf ⊆ ω we denote the set of all Turing machines H which have an
infinite number of n ∈ ω such that H on the input n does not halt i.e.

CoInf = {H : (ω \WH) is infinite}.

It is well known that the following holds, see e.g. [47].

Proposition 2.9 1. Fin is a Σ2–complete set in the arithmetical
hierarchy.

2. CoInf is Π3–complete.

2.3.3 Turing degrees

Now we describe the concept of computations with an oracle.
An oracle Turing machine H? is a Turing machine which has one addi-

tional tape called oracle tape and three additional states q?, qYES and qNO. A
set A ⊆ Σ∗ is called an oracle and we write HA for the machine H? with the
oracle A. During the computation with the oracle A the machine can write

24

or read from the oracle tape. The only modification of the computation is
when the machine enters in the state q?. Let w ∈ Σ∗ be the word written
at that time on the oracle tape. In the next step the content of the oracle
tape is erased and if w ∈ A then HA enters in the state qYES; if w 6∈ A then
HA enters in the state qNO. We say that the oracle answered positively or
negatively. The notion of an accepting computation of HA is the same as for
an ordinary Turing machine.

Later we will need the following characterization of sets in arithmetical
hierarchy by Turing machines with oracles.

Proposition 2.10 Let A ⊆ ωr. The following conditions are equivalent:

(i) A is ∆2 in the arithmetical hierarchy,

(ii) A is decided by an oracle Turing machine HX, where the oracle set X
is recursively enumerable.

25

26

Chapter 3

Arithmetics, classical and finite
models approaches

In the following sections we present some of the classical arithmetical domains
determined by some sets of primitive notions, such as addition and multi-
plication, BIT relation or concatenation. Then we construct finite model
domains of these arithmetics and we discuss some of their properties. Fi-
nally, as the main contribution of this chapter, we prove that in finite models
concatenation is semantically equivalent to the arithmetic with addition and
multiplication.

Here and later we use the word ‘domain’ to denote a model over some
universe with a fixed set of relations, functions and constants. We assume
that each element of such model has its name and, therefore, is distinguish-
able from any other. Moreover, each relation, function and constant in the
domain has its own name. Therefore, we do not distinguish between the
relation or function in the domain and the symbol in the language which is
interpreted by it. E.g. +, × are both symbols from the language and the
operations in the domain.

Since we have names for all elements in the domain we will subsequently
give a stronger notion of interpretation, see definition 3.17. It requires that
for two domains over the same universe, A and B, the interpretation ϕ̄ of A
into B preserves also the elements from the first domain. In other words, the
identity is the isomorphism between A and Iϕ̄(B). Such an interpretation
shows that everything we can express about elements of the domain in A,
we can also express in B while the previous notions preserve only structural
properties of models.

In the present chapter for each model A of the form (ω,R) we define a
family of finite models FM(A). We call this family a finite model domain
(FM–domain). E.g. if A is a domain of addition, (ω,+), then FM(A) is

27

the FM–domain of addition – the family of all models determined by proper
initial segments of natural numbers, see [33] where this terminology was
introduced.

3.1 Arithmetics as determined by sets of pri-

mitive notions

In this section we briefly review what is known about properties of arithmetics
with various sets of primitive notions. We assume in this section that the
universe is the set of natural numbers, ω.

Considering various domains with the same universe we classify them
according to their definability strength. Being more precise we ask for what
A and B, the notions from B are definable in A. In particular, for what A one
can define addition and multiplication in A. The problem was extensively
studied in the context of the infinite models for arithmetics. For a nice
survey of these results we refer to [24]. Here, we present only the basic facts
about definability of addition and multiplication in some, seemingly weaker,
domains.

Definition 3.1 Let X ⊆ ω. ≤X is the ordering relation restricted to X.
Consequently, ≤P and ≤Π are ordering relations restricted to the sets of
primes and the powers of primes, respectively. Neib is a binary relation
which holds between x and y if |x − y| = 1. | is the divisibility relation and
⊥ is the coprimality relation.

We have the following.

Theorem 3.2 In each of the following models one can define addition and
multiplication: (ω,×,≤Π) ([4]), (ω,×,Neib) ([23]), (ω, |, S) ([41]), (ω,+,⊥)
([53]). (The references give credits for the corresponding results.)

It should be mentioned that both (ω,+) and (ω,×) have decidable theo-
ries. The results are attributed to Presburger, [39], and Skolem, [44], respec-
tively.1 It follows that neither (ω,+) nor (ω,×) can define the full arithmetic
which has an undecidable theory.

In spite of the fact that we know a lot about various arithmetical relations
defined on ω many questions remain open. One of the main open problems
is whether the theory of (ω,≤, P) is decidable. It is commonly conjectured

1It should be said that Skolem in his paper did not present a valid proof of decidability of
the artihmetic with multiplication. The first proof appeared in a paper by Mostowski,[29]

28

that Th((ω,≤, P)) is undecidable since the constructive proof of decidability
would provide a method for resolving some questions about prime numbers
like the twin prime conjecture which is expressible in (ω,≤, P) by a sentence

∀x∃y1∃y2{P (y1) ∧ P (y2) ∧ x ≤ y1 ∧ y1 ≤ y2 ∧ y1 6= y2∧

∀z1∀z2(
∧

1≤i≤2

(y1 ≤ zi ≤ y2 ∧ zi 6= y1 ∧ zi 6= y2) ⇒ z1 = z2)}.

In what follows we consider the questions concerning the finite model
versions of the above problems. In particular, we examine what are the
changes in dependencies between arithmetics when we step from infinite to
finite models.

3.2 Three classical arithmetical domains

In the present section we discuss models with universes consisting of natural
numbers, words over finite alphabet and hereditarily finite sets. Tradition-
ally, arithmetic was considered as a structure with the universe consisting
of natural numbers augmented with some basic arithmetical notions such as
linear ordering, addition, multiplication, exponentiation or, in general, prim-
itively recursive functions and relations. Since the work of Gödel ([14]) we
know that in the presence of first order logic multiplication and addition are
sufficient to define all of the above notions. Moreover, the arithmetics of
concatenation and of hereditarily finite sets are semantically equivalent to
the arithmetic of addition and multiplication which means that in each one
of these arithmetic we can interpret any other.

Classically, the interpretations were given for infinite domains. Since we
concentrate on finite models in what follows we recall or prove the finite
model versions of these interpretations. These results show that being in a
finite model with relations from one domain we can freely use the notions
of any other domain because they are definable in this model. For example,
if we consider a finite model of cardinality n for arithmetic of addition and
multiplication we can treat the elements of this model as words over finite
alphabet and we can define the concatenation operation on them. It should
be mentioned that in most cases it is not possible to use interpretations
which work in the infinite case. The main difference is that when we define
in finite models a relation R on given elements a1, . . . , ak we cannot assume
that we have an access to elements which are greater than a1, . . . , ak. On the
contrary, in an infinite model we can freely use elements which are greater
than a1, . . . , ak.

29

In what follows we give definitions of respective domains. Then we present
in a uniform way their FM–versions.

Firstly, we consider the classical arithmetic of addition and multiplication.

Definition 3.3 N is the model (ω,+,×, S,≤, 0, 1), where S, + and × are
the successor, addition and multiplication functions, respectively, ≤ is the
ordering of natural numbers and 0 and 1 are its least element and the second
elements, respectively.

Let us observe that some of the operations and relations in the above
model are easily definable from the others. So the successor function is de-
finable from the ordering and ordering is definable from addition. Moreover,
the constant 0 can be defined as the only element x such that for all z,
S(z) 6= x and 1 as S(0). Therefore, addition allows us to define all the other
notions of the model beside multiplication. If we were interested in taking
a smaller set of operations we could take e.g. only exponentiation function,
exp(x, y) = xy. Then one can easily define 0 and 1 using exp and then define
multiplication as

xy = z ⇐⇒ ∃w (w 6= 0 ∧ w 6= 1 ∧ exp(exp(w, x), y) = exp(w, z)).

Similarly, having defined multiplication we can express addition as

x+ y = z ⇐⇒ ∃w (w 6= 0 ∧ w 6= 1 ∧ exp(w, x) exp(w, y) = exp(w, z)).

In chapter 6 we show that the above is no longer possible in finite models,
see corollary 6.28.

3.2.1 ∆0 definability

Before discussing the other theories we will take a closer look at the defin-
ability in N . Firstly, we define the arithmetical hierarchy of arithmetical
formulas.

An occurrence of a quantifier Q ∈ {∃, ∀} is bounded in ϕ if it is of the form
Qx ≤ t, where t is a term and x does not occur in t. Bounded quantifier
∃x ≤ t ψ can be read as a shorthand for ∃x(x ≤ t ∧ ψ) and ∀x ≤ t ψ as
∀x(x ≤ t⇒ ψ).

The basic level of arithmetical hierarchy is the family of ∆0 formulas. It
is the smallest set of formulas in the vocabulary (+,×, S,≤, 0) such that it
contains all quantifier free formulas and is closed on propositional connectives
and bounded quantification. We denote this set also by Σ0 and Π0. Then we
define the set Σn+1 as the closure of Πn under existential quantification and

30

Πn+1 as the closure of Σn under universal quantification. E.g. if ϕ is in Πn,
then the formula ∃z1 . . .∃zk ϕ is in Σn+1. Thus, a formula is in Σn if it is of
the form ∃z̄1∀z̄2 . . . Qz̄nψ, where Q is ∃ for odd n and ∀ otherwise and ψ is
in ∆0.

In some cases it is convenient to define the class Σn as the class of formulas
of the form ∃z1∀z2 . . . Qznψ with Q and ψ as above. Since in the infinite
model we have a pairing function definable by a ∆0 formula, these two notions
are semantically equivalent in the infinite model. However, in a finite model
we have no pairing function and we cannot reduce a homogeneous block of
quantifiers to a single one.

A relation R ⊆ ωr is ∆0 (resp. Σn, Πn) definable if there is a formula
ϕ(x1, . . . , xr) in ∆0 (resp. Σn, Πn) such that R = ϕN ,x̄ where x̄ is x1, . . . , xr.
Thus, we can consider the arithmetical hierarchy as the hierarchy of relations
definable by arithmetical formulas. According to the common convention we
say that R is Σn when R is definable in N by a Σn formula.

Now our main interest is in ∆0 definability. This is the most tractable
class of relations in the arithmetical hierarchy. All relations in ∆0 are decid-
able, unlike the relations in Σn for n ≥ 1. In fact ∆0 is exactly the class of
relations in linear time hierarchy, see [15] for the precise definition.

The recognition of importance of ∆0 definablity was initiated by Smullyan
in [46]. There, the first systematic study of this and similarly defined classes
was pursued. Moreover, besides the fact that ∆0 relations are in linear time
hierarchy (and, therefore, are decidable), they also have good properties with
respect to axiomatization problems and definabilty. Namely, if we can define
a relation R ⊆ ωk in N by a ∆0–formula, then this formula defines correctly
R on the ω–initial segment in each model for Peano arithmetic. For us the
importance of ∆0 definability in N is based mainly on theorem 3.21.

Now we introduce some important arithmetical functions and relations.
By exp(x, y) we denote the exponentiation function xy. By EXP(x, y, z) we
denote the graph of exp, i.e.

EXP(x, y, z) if and only if exp(x, y) = z

By BIT(x, y) we denote the relation which holds if y has 1 on the x-th place
in its binary representation. In other words, if y = Σi=n

i=0ai2
i with ai ∈ {0, 1}

then
BIT(k,Σi=n

i=0ai2
i) if and only if k ≤ n and ak = 1.

BITSUM(x, y) is the relation expressing that y is equal to the number of
ones in the binary representation of x that is

BITSUM(Σi=n
i=0ai2

i, y) if and only if y = Σi=n
i=0ai.

31

We have the following lemma.

Lemma 3.4 The following relations are ∆0 definable in N

• EXP(x, y, z),

• BIT(x, y),

• BITSUM(x, y).

First part of the lemma was proven by Bennett in [3]. Having ∆0 de-
finition of EXP(x, y, z) it is easy to write a suitable formula for BIT(x, y)
as

∃z ≤ x(EXP(2, y, z) ∧ (x div z ≡ 1(mod 2))),

where div is integer division defined by

x div y = z ⇐⇒ ∃u(0 ≤ u < z ∧ x = (yz) + u)

and x ≡ y(mod z) is defined by

∃u∃u1∃u2(0 ≤ u < z ∧ x = u1z + u ∧ y = u2z + u).

The third part was of the lemma proven by Barrington, Immerman and
Straubing in [1] in the finite models setting. A good presentation of the proof
can be found in [15].

Later, in section 3.3, we present a general relation between ∆0 definability
and definability in finite models for arithmetic.

3.2.2 Arithmetics of hereditarily finite sets and of words

Now we present the other theories of arithmetics: the theory of hereditarily
finite sets and the theory of words with concatenation.

Definition 3.5 Let V0 = ∅ and Vn+1 = P(Vn), the power set of Vn. By Vω
we denote

⋃
i∈ω Vi. By HF we denote the structure (Vω,∈).

HF has as the universe all hereditarily finite sets and ∈ as the only built-in
relation. Whenever we need we use also the set theoretic operations such as
sum (∪), intersection (∩) or set theoretical difference of y and x (y \ x).

32

Definition 3.6 Let Γt = {a1, . . . , at} be an alphabet. A word over Γt is a
finite sequence of elements from Γt. We write λ for the empty word. By Γ∗

t

we mean the set of all words over Γt, i.e.

Γ∗
t = {xk . . . x0 : k ∈ ω ∧ ∀i ≤ k xi ∈ Γt} ∪ {λ}.

FW
t is the structure

(Γ∗
t , ∗t, a1, . . . , at)

where ∗t is the concatenation operation on words from Γ∗
t and ai is the word

consisting of one character ai. In what follows we do not differentiate between
ai and ai.

The index t in FW
t and ∗t is omitted when the cardinality of the alphabet

is not important or it is clear from the context. Let us also observe that FW
t

is uniquely determined, up to isomorphism, by t.
Now we define ω-type orderings on Vω and Γ∗

t . Firstly, we consider Vω. We
define the bijection fω from the set of natural numbers to Vω. The ordering
is expressed in terms of this bijection.

Let {ki}i∈ω be the sequence of natural numbers such that k0 = 0 and
ki+1 = 2ki. By induction on n ∈ ω, we define the family of bijections
fn : {0, . . . , kn − 1} −→ Vn.

Firstly, we give an intuitive description of {fn}n∈ω. f0 is just the empty
function and f1(0) = ∅. Then, having defined fn : {0, . . . , kn − 1} −→ Vn, we
identify an element x ∈ Vn+1 with an {0, 1} word ux = ukn−1 . . . u0 describing
which elements of Vn belong to a. Namely, ui = 1 if and only if the i-th
element of Vn, fn(i), belongs to x. Such ux can be interpreted as a binary
representation of a number k = Σkn−1

i=0 ui2
i and we put fn+1(k) = x.

Now we give a precise definition of fω and {fi}i∈ω. We have:

• fi : {0, . . . , ki − 1} −→ Vi,

• fi ⊆ fi+1,

• fω =
⋃
i∈ω fi.

f0 : ∅ −→ ∅ can only be the empty set. Now let us assume that fi is
defined. We take fi+1 as

fi+1(x) = {fi(y) ∈ Vi : BIT(y, x)}.

Let us observe that fi+1 is an extension of fi.
Directly from the definition of the families Vi and fi it follows that fω =⋃

i∈ω fi is a properly defined bijection.

33

The bijection fω allows us to define the ordering on Vω. Namely, for
x, y ∈ Vω,

x ≤ y ⇐⇒ f−1
ω (x) ≤ f−1

ω (y).

The function fω establishes also the relation between HF and the predicate
BIT. Therefore, we have proved the following proposition which is a part of
the folklore. Other proofs of it can be found e.g. in Fitting, [12].

Proposition 3.7 The structure (ω,BIT) is isomorphic to HF and fω as de-
fined above is the unique isomorphism function.

In the case of Γ∗
t we define the ordering relation directly without an

additional definition of a bijection between ω and Γ∗
t . Let w = aik . . . ai0 and

u = ajn . . . aj0 be words in Γ∗
t . By lh(x) we denote the length of a word x,

e.g. lh(w) = k+ 1. For 0 ≤ r < lh(w), w(r) is the r-th letter of w, air . Then
the lexicographic ordering on words, ≤l, is defined as

w ≤l u ⇐⇒ w = u ∨ ∃r{r < lh(w) ∧ r < lh(u)∧
∀t < r(w(t) = u(t) ∧ (

∨
1≤l<m≤t(w(r) = al ∧ u(r) = am)))}∨

{lh(w) < lh(u) ∧ ∀r < lh(w)(w(r) = u(r))}.

For w, u ∈ Γ∗
t we define

w ≤ u ⇐⇒ (lh(w) < lh(u)) ∨ (lh(w) = lh(u) ∧ w ≤l u).

Let us observe that the ordering given above allows us to define the concate-
nation as an operation on natural numbers. If u, w, v are respectively the
nu-th, nw-th and nv-th elements of this ordering then

u ∗t w = v ⇐⇒ nut
dlogt(nw+1)e + nw = nv.

where dlogt(nw + 1)e is the length of a word w. Thus, we write ∗t also for
the operation on natural numbers corresponding to concatenation on words.

The above considerations can be subsumed as

Proposition 3.8 The structure (ω, ∗t, 1, . . . , t), where x∗t y = xtdlogt(y+1)e +
y, is isomorphic to FW

t.

It follows that we can treat the structures HF and FW
t as arithmetical

structures. Therefore, from now on we treat HF as (ω,BIT) and FW
t as the

model (ω, ∗t, 1, 2, . . . , t).
There are classical results concerning the mutual interpretability of N ,

HF and FW.

34

Theorem 3.9 Each of the the following models is definable in any other by
an exact interpretation

(i) N ,

(ii) HF,

(iii) FW
t, for any t ≥ 2.

The mutual interpretability of (i) and (ii) is a part of the mathematical
folklore. A detailed proof of this fact can be found in [12]. The mutual
interpretability of (i) and (iii) was shown in [40]. Let us observe that lemma
3.4 gives us an ∆0 interpretation of HF in N .

3.3 Finite arithmetics

Our aim in this section is to define, for a given countable model A with ω as its
universe, a family of finite models, FM(A), which are finite approximations
of A. We follow the approach presented by Krynicki and Zdanowski in [25].

Definition 3.10 Let A = (ω, {Ri}i≤s, {Fi}i≤t, {ai}i≤r) and let An = {0, . . . , n}.
By FM(A) we define the family {Ai}i∈ω of the finite models of the form

An = (An, {Rn
i }i≤s, {F n

i }i≤t, {bi}i≤r, n),

where

• Rn
i is the restriction of Ri to the set An

• F n
i is defined as

F n
i (ā) =

{
Fi(ā) if F (ā) ≤ n
n if Fi(ā) > n

• bni = ai if ai ≤ n, otherwise bni = n.

We extend the vocabulary by a constant MAX for denoting n – the maximal
element of a model An.

According to the above definition the n-th finite models from families
FM(HF) and FM(FW

t) are referred to as HFn and FW
t
n.

Let us mention that the family FM(N) admits a finite axiomatization
within a class of finite models.

35

Proposition 3.11 (M. Mostowski, [32]) There exists a finite set of sen-
tences F in the language of (+,×, S,≤, 0, 1,MAX) such that for each finite
model A,

A |= F if and only if ∃B ∈ FM(N) A ∼= B.

The axioms given in [32] are the following:2

1. ∀x(S(x) 6= 0 ∨ MAX = 0),

2. S(0) = 1,

3. ∀x∀y((S(x) = S(y) ∧ x 6= MAX ∧ y 6= MAX) ⇒ x = y),

4. S(MAX) = MAX,

5. ∀x(x ≤ x),

6. ∀x∀y((x ≤ y ∧ x 6= y) ⇒ ¬(y ≤ x)),

7. ∀x∀y(x ≤ S(y) ≡ (x = S(y) ∨ x ≤ y)),

8. ∀x(x + 0 = x),

9. ∀x∀y(x+ S(y) = S(x+ y)),

10. ∀x(x0 = 0),

11. ∀x∀y(xS(y) = (xy) + x).

Let us comment on possible ways of defining the family FM(A). The
ambiguity follows from the way we deal with functions from A. Namely,
we have to make an arbitrary decision how to define F n(a), for a ∈ An,
when F (a) > n. We have assumed that F n(a) = n. However, it is quite
popular in the literature of the topic to treat functions of A as relations.
Then in the n–th model the relation corresponding to F is the set {〈a, b〉 ∈
|An|2 : F (a) = b}. Consequently, we should think of constants from A as one
element sets which are empty in An unless a given constant from A belongs
to |An|. Let us denote the family of finite models defined accordingly to
the above modifications as FM∗(A) and let A∗

n be the n-th model from this
family.

Now we compare these two approaches. Let us observe that within the
family FM∗(A) we can express everything that we can say within FM(A).

2There are some minor changes due to the fact that we are dealing with ≤ relation
while in [32] the strict ordering is used. According to a common convention we skip the
symbol × in expresions of the form pt× sq.

36

Fact 3.12 For each model A there is an exact interpretation of FM(A) in
FM∗(A).

Proof. It suffices only to describe for f being a function symbol a formula
ϕf which, for each n, defines in A∗

n the graph of the function F n from the
model An.

For simplicity let us assume that f is a one place function symbol and let
Pf be the corresponding binary relation symbol in the vocabulary of FM∗(A).
The formula ϕf(x, y) can be taken as

Pf(x, y) ∨ (∀z ¬Pf (x, z) ∧ y = MAX).

If A∗
n |= Pf(a, b) then F (a) = b and the same fact holds in An. On the

other hand if A∗ 6|= Pf [a, b], for all b ∈ |A∗
n|, then F (a) > n and, therefore,

An |= f(a) = n. Thus, the formula above defines in A∗
n the graph of F n from

An. �

In both families FM(A) and FM∗(A) we extend the language by the
constant MAX. However, it is easy to see that if we could not define the
maximal element of models in FM∗(A) then we could not, in general, give
in FM∗(A) an exact interpretation of a family FM(A). To see this, let us
consider the model A = (ω, F), where

F (i) =

{
i+ 2 if i is even,

i if i is odd.

The maximal element in models from FM(A) is definable by a formula

∃x1 ∃x2 (x1 6= x2 ∧ f(x1) = x ∧ f(x2) = x).

On the other hand, in models from FM∗(A) all odd elements are indistin-
guishable and therefore we can not define the maximal element in A∗

2n+1 by a
formula without MAX. Since we assumed to have the constant MAX which
denotes the maximal element of a model, fact 3.12 implies that for each A
the family FM∗(A) is semantically as powerful as FM(A). Indeed, there are
situations in which FM∗(A) is strictly stronger than FM(A). However, be-
fore presenting an example let us define a concept which will be useful also
in the other parts of our work.

Definition 3.13 (Spectrum) Let K be a family of finite models in a vo-
cabulary σ and let ϕ be a sentence in the vocabulary σ. By a K–spectrum of
ϕ we denote the set of cardinalities of models from K in which ϕ is satisfied,

SpecK(ϕ) = {card(A) : A ∈ K ∧A |= ϕ}.

37

By a spectrum of K we mean the set of all K–spectra of sentences in the
vocabulary σ,

Spec(K) = {SpecK(ϕ) : ϕ ∈ Fσ}.
we will usually consider spectra for families of the form FM(A).

Let us note that if K is a family of all finite models, Fin, for σ containing
at least one binary relational symbol then the question whether Spec(Fin)
is closed on the complement (known also, by the name of its author, as the
Asser problem) is one of the main open problems in finite model theory. It
is equivalent to the problem in complexity theory whether NTIME(2O(n)) =
coNTIME(2O(n)).

When we consider a family of the form FM(A) then its spectrum is ob-
viously closed on the complement. Simply for each ϕ,

(ω \ {0}) \ SpecFM(A)(ϕ) = SpecFM(A)(¬ϕ).3

We have the following proposition.

Proposition 3.14 Let KA = {An}n∈ω and KB = {Bn}n∈ω be two families
of finite models in vocabularies σ and τ , respectively, such that card(An) =
card(Bn) = n + 1. If there is an exact interpretation of KA in KB then
Spec(KA) ⊆ Spec(KA).

Proof. Let ϕ̄ be an exact interpretation of KA in KB. Then for each model
Bn,

card(Iϕ̄(Bn)) = card(Bn).

It follows that for each n,
An

∼= Iϕ̄(Bn).

Now let X be a KA–spectrum of a sentence ψ and let Îϕ̄ be the translation
function as defined in subsection 2.2.2. We have the following sequence of
equivalent statements.

An |= ψ ⇐⇒ Iϕ̄(Bn) |= ψ

⇐⇒ Bn |= Îϕ̄(ψ),

where the last equivalence follows from proposition 2.7. Therefore,

X = SpecKB
(Îϕ̄(ψ)).

�

Now let us come back to the comparison of various ways of defining the
family of finite models for a countable model A.

3Obviously, 0 does not belong to any set being a spectrum.

38

Proposition 3.15 Let A = (ω,≤, f), where ≤ is the standard ordering and
f(i) = 2k, for i ∈ {2k−1 + 1, . . . , 2k}. Then there is no exact interpretation
of FM∗(A) in FM(A).

Proof. By proposition 3.14, it suffices to show that Spec(FM∗(A)) is not
contained in Spec(FM(A)).

Let Pow2 = {2k : k ∈ ω}. It is easy to see that the formula ∀x∃y Pf(x, y)
witnesses the fact that Pow2 ∈ Spec(FM∗(A)). To show that Pow2 is not in
Spec(FM(A)) it suffices to prove that, for each n ≥ 1, Eros has a winning
strategy in the n–moves game on models A2n+4 and A2n+4−1. Consequently,
no first order sentence of quantifier rank ≤ n can define in FM(A) the spec-
trum Pow2. Since n is arbitrary we conclude that Pow2 6∈ Spec(FM(A)).

Now let us describe a strategy for Eros in the n–moves game on A2n+4 and
A2n+4−1. We divide universes of models into two parts such that |A2n+4| =
A1 ∪ A2 and |A2n+4−1| = A1 ∪ A3, where A1 = {0, . . . , 2n+3 − 1}, A2 =
{2n+3, . . . , 2n+4} and A3 = A2 − {2n+4}.

Now to make the life of Eros harder, let Ares choose in the first two
extra moves the elements 2n+3 and 2n+4 from A2n+4 and let Eros answer with
elements 2n+3 and 2n+4 − 1 from the other structure. Observe that Eros has
to answer with the greatest element of the A2n+4−1 since otherwise he would
lose in the next step if Ares would choose the greatest element from A2n+4−1.

It suffices to show now that Eros still wins the n-moves game on the
structures with so chosen elements. The strategy for Eros is as follows. On
the A1–parts of the structures Eros can play according to the isomorphism
between these parts, and on the parts defined by A2 and A3 Eros can use
his winning strategy in the (n + 2)–move game between two orderings of
length greater than 2n+2, see fact 2.4. Let us observe that during the game
between A2 and A3 the functions from both structures do not give Ares any
opportunity to differentiate them. �

3.3.1 ∆0 definability and definability in FM(N)

In the present subsection we establish a relation between ∆0 definability in
N and definability in the family FM(N). On the first sight it may appear
that ∆0 definability is a stronger notion. When we use a bounded quantifier
of the form Qx ≤ tϕ(ā) the value of t may be greater than any parameter in
ϕ(ā). Thus, one cannot expect that for each ∆0 formula ϕ(x) and for each
model Nk ∈ FM(N) and ā ≤ k,

N |= ϕ[ā] if and only if Nk |= ϕ[ā].

39

However, we will see that we can find another formula ψ(x) with the above
property, that is for each model Nk ∈ FM(N) and ā ≤ k,

N |= ϕ[ā] if and only if Nk |= ψ[ā].

So, the ∆0 definability and definability in FM(N) are, in some sense, equiv-
alent notions.

Definition 3.16 The family of finite models FM(A) is cartesian closed if
for each k ∈ ω,

• there is a k–cartesian interpretation ϕ̄ such that, for each n,

A(n+1)k−1
∼= Iϕ̄(An),

• there is a formula ψ(x, x1, . . . , xk) which defines in An the natural em-
bedding of An into Iϕ̄(An), that is

An |= ψ[a, a1, . . . , ak] if and only if a is the i-th element of An and

(a1, . . . , ak) is the i-th element of Iϕ̄(An) for some i ≤ n.4

The property of being cartesian closed is in the background of many defin-
ability results in finite models, especially in establishing descriptive corre-
spondence between logics and complexity classes, see e.g. [9] or [20].

If we were interested only in spectra for families FM(A) then we could
skip the second requirement in definition 3.16. In this case only cardinality
of a model is relevant and usually one does not need to bother about the
internal structure of the interpretation. However, since we consider also
definability problems within families FM(A), we want the interpretetation
from definition 3.16 to be “well behaved”. Due to the second requirement in
definition 3.16, everything we can express about the elements from {0, . . . , n}
in A(n+1)k−1 can already be expressed in An. In other words, we can use in
An the polynomially bigger number of elements of the model A(n+1)k−1. This
will play an important role in the proof of theorem 3.21.

We need also to introduce a strengthening of the notion of interpretation.
The main intuition for this is as follows. While we think of interpretability
between two domains over the same universe what we want is not just to
define in one of them a model isomorphic to the other one. We also want
the defined model to be literally the same, that is, the isomorphism function
should be just the identity. Moreover, the condition from the next definition,
though quite strong, allows us to compare in a convenient way relations
between definabilities in two domains.

4Because the universe of A is ω, we may say shortly that (a1, . . . , ak) is the a-th element
of Iϕ̄(An).

40

Definition 3.17 Let A and B be two models with ω as the universe and let ϕ̄
be an interpretation of FM(A) in FM(B). We say that ϕ̄ is order preserving
if, for each n, the identity is an isomorphism between An and Iϕ̄(Bn).

An order preserving and exact interpretation is called a full interpretation.
If there is a full interpretation of FM(A) in FM(B) we also say that FM(A)
is definable in FM(B).

We have the following useful proposition.

Proposition 3.18 Let FM(A) and FM(B) be mutually definable one in the
other. Then, FM(A) is cartesian closed if and only if FM(B) is cartesian
closed.

Proof. We assume, for simplicity, that models under consideration are in re-
lational vocabularies. Let ϕ̄A = (ϕA

1 , . . . , ϕ
A
s) and ϕ̄B = (ϕB

1 , . . . , ϕ
B
t) be two

full interpretations of FM(A) in FM(B) and FM(B) in FM(A), respectively.
Let ϕ̄ = (ϕ1, . . . , ϕs) be a k–cartesian interpretation such that, for each n,
A(n+1)k−1

∼= Iϕ̄(An) and let ψ(x, x1, . . . , xk) be a formula which defines the
natural embedding of An into Iϕ̄(An). Let Bn = ({0, . . . , n}, R1, . . . , Rt).
Then for i ≤ t, we define a formula

γi = Îϕ̄B
(Îϕ̄(Îϕ̄A

(Ri(x̄)))).

It is straightforward to check that γ̄ = (γ1, . . . , γt) is a k–cartesian interpre-
tation of a family FM(B), that is

B(n+1)k−1
∼= Iγ̄(Bn).

Moreover, since interpretations ϕ̄A and ϕ̄B are full, the formula Îϕ̄A
(ψ) de-

fines the embedding required in the second condition of definition 3.16. �

The next proposition was implicitly used e.g. in [16]. The detailed proof
was given in [42].

Proposition 3.19 Family FM(N) is cartesian closed, that is, for each k
there is a k–cartesian interpretation ϕ̄ such that for each model Nn ∈ FM(N)

Iϕ̄(Nn) ∼= N(n+1)k−1.

Moreover, the formula which defines the embedding function h of Nn into
Iϕ̄(Nn) is

∧
i<k(xi = 0) ∧ xk = x. Then h(i) = (0, . . . , 0︸ ︷︷ ︸

k−1 times

, i).

41

Lemma 3.20 For each ∆0–formula ϕ(x̄) there exists k such that for all
n ≥ 1, all ā ≤ n and all m ≥ (n+ 1)k − 1,

N |= ϕ[ā] if and only if Nm |= ϕ[ā].

Proof. We may assume that ϕ(x̄) is in relational like form, that is all terms
in ϕ(x̄) are of the form S(0) or z ◦ y, where ◦ ∈ {+,×} and z, y are variables
or the constant 0. If it is not so we can find a ∆0 formula which is equivalent
to ϕ(x̄) in N and satisfies the above conditions.

The proof is by induction on the complexity of ϕ. For ϕ(x̄) being quan-
tifier free let k = 3. Then for each n ≥ 1 and for each ā ≤ n the value of any
term in ϕ is less then (n+ 1)3 − 1. Therefore, for each m ≥ (n+ 1)3 − 1, the
equivalence from the lemma holds.

Since the inductive steps for propositional connectives are trivial, we con-
centrate only on ϕ(x̄) of the form ∃z ≤ t(x̄) ψ(x̄, z), where for ψ there is k0

satisfying the inductive condition. We take k = 3k0. Let us assume that
n ≥ 1, ā ≤ n and that m ≥ (n+ 1)k − 1. We want to show that

N |= ∃z ≤ t(x̄)ψ[ā] if and only if Nm |= ∃z ≤ t(x̄)ψ[ā].

If N |= ∃z ≤ t(x̄)ψ[ā] then there exists b ≤ t(ā) such that N |= ψ[ā, b].
Since t is a simple term, b ≤ (n + 1)2. Then, by the inductive assumption
for m ≥ (n+ 1)k− 1 ≥ ((n+ 1)2 + 1)k0 − 1, we obtain that Nm |= ψ[ā, b] and
Nm |= ϕ[ā]. Conversely, if Nm |= ∃z ≤ t(x̄)ψ[ā], there exists b ≤ t(ā) such
that Nm |= ψ[ā, b]. Since b ≤ (n+1)2 and m ≥ ((n+1)2 +1)k0−1, we obtain,
by the inductive assumption, that N |= ψ[ā, b] and, finally, that N |= ϕ[ā]. �

Now we can state a theorem which relates ∆0 definability in N and de-
finability in finite models.

Theorem 3.21 Let R ⊆ ωr. Then R is ∆0 definable in N if and only if
FM((ω,R)) is definable in FM(N).

Proof. First, we consider the implication from the right to the left. Let
ψR(x1, . . . , xr,MAX) be a full interpretation of FM((ω,R)) in FM(N) and
let t be the term Πi≤r(xi + 2). Additionally, let ϕR(x1, . . . , xr) be a formula
constructed from ψr in the following way:

• replace each occurrence of MAX by t,

• bound each quantifier in ψ by t.

42

Of course ϕR is a ∆0 formula and we claim that it defines R in N . From
the construction of ϕR we have the following equivalence: for each ā =
a1, . . . , ar ∈ ω,

N |= ϕR[ā] if and only if Nt(ā) |= ψR[ā],

where the value of the term t(ā) is interpreted in N . Since ψR(x1, . . . , xr)
constitutes the full interpretation we also have that

Nt(ā) |= ψR[ā] if and only if R(ā).

Combining these two equivalences we obtain that ϕR defines R in N .
For the converse implication, let ϕR(x1, . . . , xr) define R in N and let k

be chosen for ϕR by lemma 3.20. Let ϕ̄ be the k–cartesian interpretation
from proposition 3.19 and let 0̃ be the sequence of k − 1 zeros. Then for
arbitrary n ≥ 1 and arbitrary a1, . . . , ar ≤ n we have the following sequence
of equivalent formulas:

N |= ϕR[ā] ⇐⇒ N(n+1)k−1 |= ϕR[ā]

⇐⇒ Iϕ̄(Nn) |= ϕR[(0̃, a1), . . . , (0̃, ar)]

⇐⇒ Nn |= Îϕ̄(ϕR)[0̃, a1, . . . , 0̃, ar].

Let η(x1, x2, . . . , xr) be Îϕ̄(ϕR)(0̃, x1, . . . , 0̃, xr). Then, for n ≥ 1,
η(x1, . . . , xr) defines R restricted to the universe of Nn. To finish the proof
we should add to η a clause for the one element model N0. If R(0, . . . , 0)
then the interpretation of FM((ω,R)) is the formula

∃=1x(x = x) ∨ (∃≥2x(x = x) ∧ η(x1, . . . , xr)),

otherwise we should take

(∃=1x(x = x) ∧ (xr 6= xr)) ∨ (∃≥2(x = x) ∧ η(x1, . . . , xr)).

�

As a particular case of theorem 3.21 we obtain a theorem whose proof
essentially uses ∆0 definability of BIT in N , see the second point of lemma
3.4. The theorem itslelf is a part of a mathematical folklore.

Theorem 3.22 The family FM(HF) is definable in FM(N).

Proof. Since HF = (ω,BIT) it suffices to show that there is a formula
ϕ(x, y) ∈ F{S,+,×,0} which in a finite model of cardinality n defines a restric-
tion of BIT to the set {0, . . . , n}. However, by lemma 3.4, BIT is ∆0 definable
in N and, by theorem 3.21, we can transfer this definition to finite models. �

43

3.3.2 Known relations between FM(N), FM(HF) and
FM(FW)

In this subsection we present relations between the three domains above
which were known prior to this work. Let us start with the theorem from [8].
It is the first step towards the interpretation of addition and multiplication
in FM(HF). The following has been proven by Dawar et al.

Theorem 3.23 ([8]) FM((ω,≤)) is definable in FM(HF).

Barrington et el. extended this result in [1] by showing that BIT can
express also BITSUM relation. (However, the proof in [1] essentially uses de-
finability of the ordering relation from BIT.) It follows easily, see Immerman,
[20], that BIT can express also addition and multiplication. We formulate
this result in our terminology and we give a slightly stronger version of it
which will be useful for us in section 3.4. Nevertheless, the proofs given in
[1] and [20] carry over also to this stronger version.

Definition 3.24 Let t ≥ 2. By BITt(x, y, k) we denote the predicate which
is true when k < t and y has the digit k on the x-th place in its expansion
in the base t. In other words, whenever y = Σi=r

i=0ait
i, with ai < t for i ≤ r,

then
BITt(x,Σ

i=r
i=0ait

i, k) if and only if x ≤ r and ax = k.

When t = 2, BIT2(x, y, 1) is equivalent to the predicate BIT(x, y) defined in
subsection 3.2.1.

Theorem 3.25 ([1], see also [20]) Let
t ≥ 2. FM(N) is definable in FM((ω,BITt)).

In the next section, we use the full power of the the last theorem. Now
we are mainly interested in the case when t = 2. As a corollary of the last
theorem and proposition 3.18 we obtain the proposition which was proven
directly by Schweikardt in [42].

Proposition 3.26 ([42]) For each k, there is a k–cartesian interpretation
ϕ̄ such that for each model HFn ∈ FM(HF),

Iϕ̄(HFn) ∼= HF(n+1)k−1.

Moreover, the embedding function h of HFn into Iϕ̄(HFn) is defined as
h(i) = (0, . . . , 0︸ ︷︷ ︸

k−1 times

, i).

44

Proof. The thesis is a consequence of theorems 3.25, 3.22, 3.19 and propo-
sition 3.18. The argument is as follows: each FM(N) and FM(HF) is exactly
interpretable in the other one. Thus, since FM(N) is cartasian closed so is
FM(HF). �

In both families, FM(N) and FM(HF), we can give a full interpretation
of FM(FW

t). This allows us to treat the elements of a finite model in FM(N)
as words augmented with the concatenation operation.

Theorem 3.27 For each t ≥ 1, FM(FW
t) is definable in FM(N) and FM(HF).

Proof. Since the relation of definability between families of the form FM(A)
is transitive, it suffices, by theorem 3.25, to give a full interepretation of
FM(FW

t) in FM(N).
Let us recall that we can define in N the concatenation operation on

words over the alphabet Γt by means of addition, multiplication and the
graph of the exponentiation function. Since the graph of the exponentiation
function is ∆0 definable from addition and multiplication, therefore we can
rewrite the definition of concatenation in N using only + and ×. The defi-
nition so obtained is ∆0. The thesis follows from theorem 3.21. �

3.4 Concatenation defines full arithmetic in

finite models

The results from this section were published as a part of Krynicki and
Zdanowski [25]. Nevertheless, it is based on the work of the author of this
dissertation.

Unless explicitly stated, in this section we consider only alphabets with at
least two different characters, that is we consider Γt for t ≥ 2. This assump-
tion follows from the fact that there is a straightforward characterization of
FW

1. Namely, FW
1 is isomorphic to (ω,+) with an isomorphism function

given by f(a1 . . . a1︸ ︷︷ ︸
n times

) = n.

In the case of interpretability of FM(N) in FM(FW
t) the first important

result, according to our present interests, is the result of Bennett, [3]. Let

∆
{∗t,≤}
0 be the collection of bounded formulas defined as in section 3.2 but

with concatenation as the only function symbol and with ≤ as the only

45

predicate.5 The following theorem has been proven by Bennett in [3].

Theorem 3.28 ([3]) Let t ≥ 2. There are ∆
{∗t,≤}
0 formulas which define

the addition and multiplication functions in (ω, ∗t,≤, 1, . . . , t).

In what follows we prove the finite model analog of Bennett’s theorem.
Namely, we show that FM(N) and FM(HF) have exact interpretations in
FM(FW

t). However, contrary to the Bennett’s result, we do not need the
ordering relation. Indeed, we will define ordering in a finite model of con-
catenation.

One possible way of proving the main result of this section would be
to show that ∆

{∗t,≤}
0 definability in the infinite model is captured by the

definability in FM(FW
t). To do this one should prove for FM(FW

t) the
analogs of proposition 3.19 and theorem 3.21.6 However, the proof along this
line would relay on relatively complicated and indirect constructions of [3].
Therefore, we decided to give the direct proof. Then, as a consequence of
the results proven in previous sections, we obtain that FM(FW

t) is cartesian

closed and that ∆
{∗t,≤}
0 definability in the infinite model is captured by the

definability in FM(FW
t); exactly like in the case for N and FM(N).

As the first step towards the interpretation of the full arithmetic in
FM(FW

t) we will show that the ordering relation is definable in finite models
from FM(FW

t).
In what follows, we omitthe subscript t in ∗t since what is essential in our

considerations is only that t ≥ 2.

Lemma 3.29 The graph of the concatenation function restricted to the ele-
ments of a finite model from FM(FW

t) is definable in FM(FW
t). We denote

the formula which represents this graph by ϕ∗(x, y, z).

Proof. The formula ϕ∗(x, y, z) can be written as

(z 6= MAX ∧ x ∗ y = z)∨

(z = MAX ∧ ((y = MAX ∧ x = λ) ∨ (y = λ ∧ x = MAX)))∨
5Bennett uses ≤ only in the context Qx ≤ t but he observes that x ≤ y can be defined

as ∃z ≤ y(z = x).
6Let us observe that while interpreting the model for concatenation of cardinality

(n + 1)k − 1 in a set of k–tuples from the model of cardinality n + 1 one cannot pro-
pose that a tuple (α1, . . . , αk) corresponds to the element α1 ∗ . . . ∗ αk. In this case, for
the empty word λ and α 6= λ, two different tuples (α, λ, . . . , λ) and (λ, . . . , λ, α) would
correspond to the same word α.

46

{z = MAX∧ ∃z′(z′ 6= MAX ∧ (
∨

1≤i≤t

[MAX = z′ ∗ ai ∧
∧

1≤j<i

(MAX 6= z′ ∗ ai)∧

∀z′′((z′′ 6= z′ ∧ z′′ ∗ ai = MAX) ⇒ z′′ ∗ a1 = MAX)∧
∃y′(y = y′ ∗ ai ∧ z′ = x ∗ y′)]))}.

The first two disjuncts of the above formula handle easy cases. If none of
them is true then x ∗ y ≥ MAX, x 6= MAX and y 6= MAX. In this case
x 6= λ and y 6= λ. We should only exlude the case x ∗ y > MAX. To do this
we find ai such that MAX = z′ ∗ ai for some minimal z′ < MAX. Then it
suffices to check that ai is the ending letter of y = y′∗ai and that z′ = x∗y′. �

Sometimes, when we compare the value of two terms in a given finite
model An ∈ FM(A) we may think that they are equal while in the infinite
model A they have different values greater or equal to the maximal element
of An. In such a case values of s and t in An will be equal to the maximal
element of An. Now we define a formula which distinguishes such cases for
models from FM(FW

t).

Definition 3.30 For two terms s = s1 ∗ . . . ∗ sk and t = t1 ∗ . . . ∗ tn, were ti
and si are variables or constants, we write t $ s for a formula

∃x1 . . .∃xk ∃y1 . . . ∃yn (x1 = s1 ∧ y1 = t1
∧

1<i≤k

ϕ∗(xi−1, si, xi) ∧
∧

1<i≤n

ϕ∗(yi−1, ti, yi) ∧ xk = yn).

Since ϕ∗ defines in a given A ∈ FM(FW t) the restriction of the graph
of the concatenation function from FW

t to the universe of A, we have the
following property of $.

Fact 3.31 For each n and a valuation ā in FW
t
n, for all terms t, s,

FW
t
n |= (s $ t)[ā] if and only if

FW
t |= (s = t)[ā] and values of t and s in FW

t are less or equal to n.

It follows that $ allows us to overcome the problem which arises when
FW

t
n |= (t = s)[ā] merely because values of t and s in FW

t are greater or
equal to the maximal element of FW

t
n and not necessarily equal one to the

other in FW
t.7

7Let us observe that s $ t is not a formula with two free variables for which we
substitute terms t and s. It is the case because the form of s $ t depends on the form of
t and s.

47

Lemma 3.32 Let t ≥ 1 and let lh(x) be the length function for words in Γ∗
t .

1. lh(x) = lh(y) and lh(x) < lh(y) are definable in FM(FW
t) by a formula

with concatenation only.

2. There is a formula ϕ≤(x, y) such that, for each n, ϕ≤ defines in
FW

t
n ∈ FM(FW

t) the standard ordering relation restricted to the uni-
verse of FW

t
n.

Proof. For t = 1 the proposition is obvious so we assume that t ≥ 2. Let
us observe that if we could use the predicates lh(x) < lh(y) and lh(x) = lh(y)
then we could define the ordering by the following formula,

x = y ∨ lh(x) < lh(y)∨

[lh(x) = lh(y) ∧ ∃z1, z2, z3 (
∨

1≤i<j≤t

(x $ z1 ∗ ai ∗ z3 ∧ y $ z2 ∗ aj ∗ z3))].

Since lh(x) = lh(y) is easily definable from lh(x) < lh(y), it suffices to
define the latter predicate. As a first step we define ψ(x, y) of the form

∃z (x ∗ z 6= MAX ∧ y ∗ z = MAX).

with the following properties:

(i) If lh(x) + 2 ≤ lh(y) then ψ(x, y).

(ii) If lh(x) − 1 ≥ lh(y) then ¬ψ(x, y).

To show that ψ satisfy (i) and (ii) let us assume that lh(x) + 2 ≤ lh(y).
Then let k be the minimal number such that lh(y ∗ ak1) = lh(MAX) + 1. Of
course, we have FWn |= (y ∗ ak1 = MAX). On the other hand lh(x ∗ ak1) ≤
lh(y ∗ak1)−2 ≤ lh(MAX)+1−2 < lh(MAX). Thus, FWn |= (x∗ak1 6= MAX).

In a similar way we can show the second condition.
Using ψ, we may define the formula ϕ̃<(x, y) :=

ϕ̃<(x, y) := ψ(x ∗ x ∗ x, y ∗ y ∗ y) ∧ x ∗ x 6= MAX ∧ y ∗ y 6= MAX.

Then for all x, y,

if lh(x) < lh(y) <

⌊
lh(MAX)

3

⌋
then ϕ̃<(x, y) and ¬ϕ̃<(y, x). (*)

The property (*) of ϕ̃< follows from the fact that if lh(x) < lh(y) then
lh(x∗x∗x)+2 < lh(y∗y∗y) and lh(y∗y∗y)−1 ≥ lh(x∗x∗x). Unfortunately,

48

ϕ̃< gives us no information when lh(x) = lh(y). Nevertheless, the following
formula ϕ̃=(x, y) :=

x ∗ x ∗ x 6= MAX ∧ y ∗ y ∗ y 6= MAX∧

[x = y = λ ∨ ∃x′, y′ (
∨

1≤i,j≤t

(x = x′ ∗ ai ∧ y = y′ ∗ aj ∧ ϕ̃<(x′, y) ∧ ϕ̃<(y′, x)))]

has the property that

if lh(x), lh(y) <

⌊
lh(MAX)

3

⌋
then

lh(x) = lh(y) if and only if ϕ̃=(x, y),

It is easy to see that when lh(x) = lh(y) <
⌊

MAX
3

⌋
then ϕ̃=(x, y). For the

other direction let us assume that ϕ̃=(x, y). If x = y = λ there is nothing
to prove so let us assume that x, y > λ.8 Then, ψ(x′ ∗ x′ ∗ x′, y ∗ y ∗ y),
where lh(x′) = lh(x) − 1. By the second property of ψ we obtain that
lh(x′ ∗ x′ ∗ x′)− 1 < lh(y ∗ y ∗ y). In consequence we have that lh(x) ≤ lh(y).
Similarly, we obtain that lh(y) ≤ lh(x). Thus, the only possibility is that
lh(x) = lh(y).

It is easy to write a formula for lh(x) < lh(y) now. We simply divide
x and y into four parts such that the first three have the same length and
the last part of x is shorter than the last part of y. For each x, y we can
do it in such a way that all parts will have lengths less than

⌊
MAX

3

⌋
and we

will be able to use ϕ̃< and ϕ̃= for comparing their lengths. We should only
add a finite disjunction for models in which lh(MAX) ≤ 3. Therefore, the
predicate lh(x) < lh(y) can be expressed as

∃x1, x2, x3, x4, y1, y2, y3, y4 {x $ x1 ∗ x2 ∗ x3 ∗ x4 ∧ y $ y1 ∗ y2 ∗ y3 ∗ y4∧
∧

1≤i≤4

(xi ∗ xi ∗ xi 6= MAX) ∧
∧

1≤i≤4

(yi ∗ yi ∗ yi 6= MAX)∧

∧

i≤2

ϕ̃=(xi, yi) ∧ ϕ̃<(x3, y3) ∧ ¬ϕ̃=(x3, y3)}∨

∨

0≤i<j≤3

∨

u, v ∈ Γ∗
t

lh(u) = i, lh(v) = j

(x $ u ∧ y $ v).

8Let us observe that ϕ̃=(x, y) cannot be true if one of x and y is the empty word and
the other is not.

49

This ends the proof of the lemma. �

Below, instead of writing ϕ≤(x, y) we simply write x ≤ y when x, y are
words. As usual we write x < y when x ≤ y and x 6= y.

As the next steps towards the interpretation of the full arithmetic in
FM(FW

t) we show that in FM(FW
t) one can define the graphs of addition

and exponentiation with the base t, that is expt(x) = tx.
Before going into details of lemmas, we will say a few more words on

the representation of numbers as finite strings over t–letter alphabet, the, so
called, t–adic representation. When t = 2 we call it a dyadic representation.

When we use the usual number representation, e.g binary or decimal,
one number has infinitely many strings which represent it. Since we can
always add leading zeros we can write, e.g. the number 2 in the decimal
representation as (2)10 or (02)10. In the model of words with concatenation
operation we have unambiguous representation of numbers according to the
ordering of words we have defined in subsection 3.2.2. If we set, for a1, . . . , at
– characters in the alphabet – the function ind(ai) = i then a word u =
uk . . . u0, with ui ∈ Γ∗

t , represents the number Σi=k
i=0ind(ui)t

i (here the empty
sum is interpreted as 0). Let

numt(u) = Σi=k
i=0ind(ui)t

i

be the function which computes the number represented by u in t–adic no-
tation.9 It follows that for each word u and ai ∈ Γt,

numt(u ∗ ai) = numt(u)t+ ind(ai).

The following lemmas show that addition and expt are definable in finite
models from FM(FW

t).
First, we present a lemma which shows how to express some useful prop-

erties of words in the language with concatenation.

Definition 3.33 We define the following relations on the set of all words:

• x ⊆ y, x is a subword of y,

• x � y, y begins with the word x, that is y = x ∗ z for some word z,

• x ≺ y, y begins with the word x and it is a proper subword of y,

• a∗i = {x : x consists only of letters ai}, for i ≤ t,

9Whenever it is inessential or clear from the context we omit the index t.

50

• Letter(x, p, a), the lh(p)-th letter of x is a or lh(x) > lh(p) + 1 and
a = λ, that is

x = xn . . . x0 with xi ∈ Γt and (alh(p) = a ∨ (a = λ ∧ lh(p) > n)).

• Interval(x, y, w1, w2), y is a subword of x determined by the lengths of
w1 and w2, that is, x = xn . . . x0 and y = xn−lh(w1) . . . xn−lh(w1)−lh(w2),
where xi ∈ Γt.

Lemma 3.34 The following relations are expressible in finite models from
FM(FW

t):

• x ⊆ y,

• x � y,

• x ≺ y,

• x ∈ {ai}∗, for 1 ≤ i ≤ t,

• lh(x) ≥ 1 and lh(x) = max(lh(y), lh(z)),

• Letter(x, p, a),

• Interval(x, y, w1, w2),

Proof. x ⊆ y can be expressed as

∃z1 ∃z2 (y $ z2 ∗ x ∗ z2)

Similarly, x � y is just
∃z (y $ x ∗ z).

Then, x ≺ y can be written as

x � y ∧ x 6= y.

lh(x) ≥ 1 is just ∨

1≤i≤t

ai ⊆ x

and lh(x) = max(lh(y), lh(z)) can be expressed, by lemma 3.32, as

lh(x) ≥ lh(y) ∧ lh(x) ≥ lh(z) ∧ (lh(x) ≤ lh(y) ∨ lh(x) ≤ lh(z)).

51

Letter(x, p, a) can be written as

(lh(x) ≤ lh(p) ∧ a = λ)∨

∃z ∃y (x $ y ∗ a ∗ z ∧ lh(z) = lh(p) ∧
∨

1≤i≤t

(a = ai)).

Finally, predicate Interval(x, y, w1, w2) can be expressed as

∃x1 ∃x2 (lh(x1) = lh(w1)∧lh(x2) = lh(w1∗w2)∧x1 � x∧x2 � x∧x2 $ x1∗y).

�

Lemma 3.35 There is a formula ϕ+(x, y, z) which, for each n, defines in
FW

t
n ∈ FM(FW

t) the graph of the addition function restricted to |FW
t|.

Proof. We write a formula which describes the algorithm of adding two
numbers in t–adic notation, say x = xn . . . x0 and y = yk . . . y0, where
xi, yj ∈ Γt for i ≤ n, j ≤ k. The algorithm is similar to the usual algo-
rithm of addition, e.g. in binary or decimal notation. However, contrary to
the standard case, during the process of addition of two numbers in t–adic
notation we may encounter three types of carry: no carry, carry equals 1 and
carry equals 2.

Adding x = xn . . . x0 to y = yk . . . y0 we guess two strings, c1 and c2.
Let c1 = dm . . . d0 and c2 = d′m . . . d

′
0, where m = max(n, k). Then, di = a2

if there is a carry generated on the i-th position and otherwise di = a1. If
di = a2 then d′i describes carry generated at this position, that is if the carry
equals 1 then d′i = a1 and if the carry equals 2, then d′i = a2. With the help
of c1 and c2 one can verify that a given word z is the result of adding x and
y.

Now we write formulas which determine c1 and c2.
10 To shorten our

formulas we assume convention that the empty word λ is denoted as a0, just
as it would be one more letter in our alphabet. Sometimes we also skip the
concatenation sign, that is instead of u∗w we write uw. We do it often when
one of the arguments of ∗ is a one letter word.

The formula Carry1(x, z, c1, c2) which describes c1 has the form

∧

3≤i≤t

ai 6⊆ c1 ∧ lh(c1) = max(lh(x), lh(y))∧

10Let us observe that both c1 and c2 are less than at least one of x and y.

52

{Letter(c1, λ, a2) ≡ [
∨

i+j>t
0≤i,j≤t

(Letter(x, λ, ai) ∧ Letter(y, λ, aj))]∧

∀w(lh(w) < lh(c1) ⇒ (Letter(c1, wa1, a2) ⇐⇒ ψ(x, y, w, c1, c2))},
where ψ is a disjunction of three formulas

•

Letter(c1, w, a1) ∧ [
∨

i+j>t
0≤i,j≤t

(Letter(x, wa1, ai) ∧ Letter(y, wa1, aj))],

•
Letter(c1, w, a2) ∧ Letter(c2, w, a1)∧

[
∨

i+j+1>t
0≤i,j≤t

(Letter(x, wa1, ai) ∧ Letter(y, wa1, aj))],

•
Letter(c1, w, a2) ∧ Letter(c2, w, a2)∧

[
∨

i+j+2>t
0≤i,j≤t

(Letter(x, wa1, ai) ∧ Letter(y, wa1, aj))].

Formula ψ uses the information coded in c1 and c2 about the carry gen-
erated at the position lh(w) and then determines whether there is a carry
generated on the position lh(w) + 1. The carry at the 0-th position is com-
puted in the second line of Carry1(x, z, c1, c2).

Carry2(x, y, c1, c2) can be written as

∧

3≤i≤t

ai 6⊆ c1 ∧ lh(c2) = max(lh(x), lh(y)) ∧ (Letter(c2, λ, a1)∧

∀w(lh(w) < lh(c1) ⇒
(Letter(c2, wa1, a2) ⇐⇒ (Letter(c1, w, a2) ∧ ψ′(x, y, w, c1, c2)))),

where ψ′ is a disjunction of formulas

•

Letter(c2, w, a1) ∧ (
∨

i+j≥2t
0≤i,j≤t

(Letter(x, wa1, ai) ∧ Letter(y, wa1, aj))),

53

•

Letter(c2, w, a2) ∧ (
∨

i+j≥2t−1
0≤i,j≤t

(Letter(x, wa1, ai) ∧ Letter(y, wa1, aj))).

In the second line of Carry2 we use the fact that there can not be a carry
equal 2 if there was no carry from the previous position what is expressed by
Letter(c1, w, a2). We check this fact with the help of formula Letter(c1, w, a2).
Then, in ψ′ we compute what should be the value of a carry on the lh(wa1)-th
position.

The formula ψ′(x, y, w, c1, c2) describes the situations in which a carry on
a given position lh(wa1) equals 2 when the carry from the position lh(w)
equals 1 or 2.

The formulas above, Carry1(x, y, c1, c2) and Carry2(x, y, c1, c2), describe
recursively properties of c1 and c2. To compute the k-th letter of c1, Carry1

uses the (k − 1)-th letters of c1 of c2. The same fact holds also with respect
to Carry2 and c2.

It can be proven by a simultaneous induction on the length of sub-
words of c1 and c2 that they are uniquely determined for given x and y.
Namely, for c1 = dm . . . d0 and c2 = d′m . . . d

′
0 such that Carry1(x, y, c1, c2)

and Carry2(x, y, c1, c2), the letters d0 and d′0 are determined uniquely for a
given x, y. Then it holds that if di and d′i, for i < m, are determined uniquely,
then also di+1 and d′i+1 are determined uniquely.

We define three formulas:

• NoCarry(c1, w) for a formula which tells that there was no carry gen-
erated at the position lh(w),

Letter(c1, w, a1),

• Carry1(c1, c2, w) for a formula which tells that carry generated at the
position lh(w) is equal 1,

Letter(c1, w, a2) ∧ Letter(c2, w, a1),

• Carry2(c1, c2, w) which states that carry generated at the position lh(w)
is equal 2,

Letter(c1, w, a2) ∧ Letter(c2, w, a2).

Now we can write a formula Add(x, y, z) which expresses that z is the result
of addition of x and y (see below for a description of Add(x, y, z)).

∃c1, c2 {Carry1(x, y, c1, c2) ∧ Carry2(x, y, c1, c2)∧

54

∃z′[(
∨

1≤i≤t

(z = z′ai)) ∧ ((lh(z) = max(lh(x), lh(y)) ∧ Letter(c1, z
′, a1))∨

(lh(z) = max(lh(x), lh(y)) + 1 ∧ Letter(c1, z
′, a2)))]∧

∧

0≤i≤t

[Letter(z, λ, ai) ≡ (
∨

r∈{0,1}

∨

j+k=rt+i
0≤j,k≤t

(Letter(x, λ, aj) ∧ Letter(z, λ, ak)))]∧

∀w [lh(w) ≤ lh(z) ⇒ (
∧

0≤i≤t

(Letter(z, wa1, ai) ≡ ψi))],

where ψi(x, y, z, w, c1, c2) is the disjunction of the following formulas.

NoCarry(c1, w) ∧
∨

r∈{0,1}

∨

j+k=rt+i
0≤j,k≤t

(Letter(x, wa1, aj) ∧ Letter(z, wa1, ak)),

Carry1(c1, c2, w) ∧
∨

r∈{0,1,2}

∨

j+k+1=rt+i
0≤j,k≤t

(Letter(x, wa1, aj) ∧ Letter(z, wa1, ak)),

Carry2(c1, c2, w) ∧
∨

r∈{0,1,2}

∨

j+k+2=rt+i
0≤j,k≤t

(Letter(x, wa1, aj) ∧ Letter(z, wa1, ak)).

In the first line of Add(x, y, z) we guess the words c1 and c2 which describe
carries in the proces of additions of x and y. The second and third lines
determine, on the basis of the structure of c1, whether the length of z is
correct. Then, the fourth line describes that the first letter of z is the result
of adding first letters of x and y. The last line of the formula does the same
for the following letters of z. The correctness of Add(x, y, z) follows directly
from the meaning of the previously constructed formulas. �

From now on, till the end of this chapter, when a and b are elements of a
model FWn we write a + b to denote the sum of a and b, i.e. the element c
such that FWn |= ϕ+[a, b, c].

Lemma 3.36 Let expt(x) = tx. There is a formula ϕexpt
(x, y) which, for

each n, defines in FW
t
n the graph of the exponentiation function expt re-

stricted to the universe of FW
t
n.

Proof. Since we assumed that our models have as universes initials seg-
ments of ω we write, for words w, u, expressions like expt(u) = w with the
natural meaning.

55

For each k > 0, the word which corresponds in FW
t
n to the number tk has

the form ak−1
t−1 at:

num(ak−1
t−1 at) =

k−1∑

i=1

(t− 1)ti + t = (
k−1∑

i=0

(t− 1)ti − (t− 1)) + t = tk.

The set of words u such that u = expt(v), for some v, is definable by the
formula

Powt(u) := ∃u1 (u1 ∈ {a1}∗ ∧ u $ u1 ∗ a2) ∨ u $ a1.

Now the proof of the lemma proceeds as follows. Firstly, we define the
function expt on some initial segment of a model FW

t
n and then we extend

this definition on the whole model. The general idea of the construction
is to describe by some word from FW

t
n the polynomial algorithm for fast

exponentiation. The algorithm uses the following recursive dependencies:

expt(λ) = a1,

expt(ai) = ai−1
t−1at, for i = 1, . . . , t,

expt(uai) = a
t(x+1)+i−1
t−1 at, whenever expt(u) = axt−1at.

For a one letter word ai we use the expression expt(ai) for the word ai−1
t−1at.

By RecExp(a, y1, y2), where a is a one letter string, we mean the formula
which states that whenever y1 = expt(u), for some u, then y2 = expt(ua). It
can be written as

[y1 $ a1 ∧ (
∨

1≤i≤t

(a $ ai ∧ y2 $ expt(ai)))] ∨ ∃v ∈ {at−1}∗ [y1 $ v ∗ at∧

(
∨

1≤i≤t

(a $ ai ∧ y2 $ vat−1 ∗ . . . ∗ vat−1︸ ︷︷ ︸
t times

∗ at−1 ∗ . . . ∗ at−1︸ ︷︷ ︸
(i−1) times

∗at))].

Now we can present the main construction. Let u = un . . . u0, with ui ∈
Γt, be a word for which we want to compute expt(u). We construct three
words x, y, z such that x = xn ∗ xn−1 ∗ . . . ∗ x0, y = yn ∗ yn−1 ∗ . . . ∗ y0,
z = zn ∗ zn−1 ∗ . . . ∗ z0, which satisfy the following dependencies:

1. lh(xi) = lh(yi) = lh(zi), we denote lh(xi) by li,

2. xi = un . . . uia
li−i
1 ,

3. yi = ali−1
t−1 at,

56

4. zi = ai+1
2 ali−i−1

1 ,

5. expt(un . . . ui) = yi.

As it is expressed in point 5 we store the value expt(un . . . ui) in yi and the
value un . . . ui in xi. The sequence of a′2s in zi determines the length of
un . . . ui. If we could find x, y, z with the above properties then we could find
expt(u) = y0. Thus, our aim is to write a formula GoodSeq(u, x, y, z) which
states that x, y, z satisfy points 1 − 5 for u.

Firstly, we write a formula PowSeq(y) which expresses that y is a con-
catenation of strings which are greater than 1 powers of t. It has the form

∀w ⊆ y(at−1 ⊆ w ∨ at ⊆ w) ∧ y 6= λ.

Now we write a formula Next(y, w1, w2) which expresses that w1 ≺ w2 � y
and that w2 is w1 prolonged with a word being one of yi.

w1 ≺ w2 ∧ w2 � y ∧ [(w1 $ λ ∧ Powt(w2))∨

∃s1 ∃s2 (Powt(s2) ∧ w1 $ s1 ∗ at ∧ w2 $ w1 ∗ s2)].

Next, we write a formula First(u, x, y, z) which expresses that xn, yn, zn
satisfies dependencies 1 – 5.

∃w{Next(y, λ, w)∧ [
∨

1≤i≤t

(ai � u⇒

[w $ expt(ai) ∧ ∃v ∈ {a1}∗ (lh(a1v) = lh(w) ∧ aiv � x ∧ a2v � z)])]}.
It would be difficult to express that a given triple (xi, yi, zi) satisfies condi-

tions 1 – 5. Instead, we write a formula CorrectStep(u, xi+1, yi+1, zi+1, xi, yi, zi)
which expresses that if xi, yi, zi are the elements following xi+1, yi+1, zi+1

in the sequence which forms x, y, z then xi, yi, zi satisfy 1 – 5 provided
xi+1, yi+1, zi+1 satisfy 1 – 5. It has the form

∃s1 ∈ {a2}∗ ∃s2 ∈ {a1}∗ ∃u1 � u ∃u2 � u [zi+1 $ s1a1s2 ∧ zi $ s1a2s2∧

lh(u1) = lh(s1) ∧ lh(u2) = lh(s1a2) ∧ xi+1 $ u1a1s2 ∧ xi $ u2s2∧
∨

1≤i≤t

(u1ai $ u2 ∧ RecExp(ai, yi+1, yi))].

The formula CorrectStep(u, xi+1, yi+1, zi+1, xi, yi, zi) checks the following de-
pendencies.

• zi begins with the sequence of a2’s which is one letter longer than the
corresponding sequence in zi+1,

57

• xi+1 and xi begin with the initial segments of u: u1 and u2, respectively,
and the lengths of these sequences are determined by the lengths of a2’s
sequences in zi+1, zi,

• if yi+1 = expt(w), then yi = expt(wa), where a is the last letter in u2.

Then we write a formula Induct(u, x, y, z) which states that, for all i < n,
CorrectStep(u, xi+1, yi+1, zi+1, xi, yi, zi) holds. Since we know how to ex-
press that the triple xn, yn, zn is correct and the whole sequence is finite
it clearly suffices to assert correctness of the whole sequence. The formula
Induct(u, x, y, z) has the form

∀w1, w2, w3 {(Next(y, w1, w2) ∧ Next(y, w2, w3)) ⇒
∀x1, x2 ((Interval(x, x1, w1, w2) ∧ Interval(x, x2, w2, w3)) ⇒
∀y1, y2 ((Interval(y, y1, w1, w2) ∧ Interval(y, y2, w2, w3)) ⇒
∀z1, z2 (Interval(z, z1, w1, w2) ∧ Interval(z, z2, w2, w3)) ⇒

CorrectStep(u, x1, y1, z1, x2, y2, z2))))}.

In the first four lines of the above formula we find the words xi, yi, zi, for
i ∈ {1, 2}, such that they are consecutive elements of the sequences forming
x, y and z. We extract them from x, y, z on the basis of the structure of y
using auxiliary words w1 and w2. In the last line we check that x1, y1, z1 and
x2, y2, z2 satisfy the recursive dependencies.

The whole formula GoodSeq(u, x, y, z), which expresses that x, y, z satisfy
the conditions 1 – 5 for u, has the form

lh(x) = lh(y) = lh(z) ∧ PowSeq(y) ∧ First(u, x, y, z)∧

Induct(u, x, y, z) ∧ ∃w(Next(y, w, y)∧ Interval(x, u, w, x)).

The last conjunct of the above formula assures us that the last member of
xn, xn−1, . . . , x0 is u. Thus, given u and x, y, z such that GoodSeq(u, x, y, z),
the last member of the sequence y = yn ∗ . . .∗ y0, is equal to expt(u). We can
define this element by the following formula

Last(y, out) := ∃w (Next(y, w, y)∧ y $ w ∗ out).

Of course in general it is not true that if u and expt(u) are elements of a
finite model FWn, then also x, y, z satisfying GoodSeq(u, x, y, z) are in FWn.
However, the length of x, y, z is no more than two times longer than the
length of expt(u). To see this it suffices to note that the length of y0 is equal

58

to the length of expt(u) and that, for each 0 ≤ i < lh(u), 2lh(yi+1) ≤ lh(yi).
Since Σi=k

i=02i < 2k+1, we obtain that

lh(x) = lh(y) = lh(z) < 2lh(expt(u)).

It follows that the formula ϕ̃expt
(u, w) of the form

(u = λ ∧ w = a1) ∨ ∃x, y, z (GoodSeq(u, x, y, z) ∧ Last(y, w))

defines the graph of expt restricted to the elements u such that
2lh(u) < lh(MAX).

To extend this definition on the whole model FW
t
n, one may use the

following dependency:
if

• y1 = expt(x1) = a
num(x1)−1
t−1 at,

• y2 = expt(x2) = a
num(x2)−1
t−1 at,

• y3 = expt(x3) = a
num(x3)−1
t−1 at,

for x1, x2, x3 ≥ 1, then

y = expt(x1 + x2 + x3) = a
(num(x1)−1)+(num(x2)−1)+(num(x3)−1)+2
t−1 ∗ at,

where x1 + x2 + x3 is the usual addition operation which was shown to be
definable in FW

t
n in lemma 3.35.

So, let Γ≤2
t be the set of words of length ≤ 2. Then we can write the

formula expressing that w = expt(u) as follows

(
∨

s∈Γ≤2

(u $ s ∧ w $ expt(s))) ∨ [¬ϕ≤(atat, u)∧

∃u1, u2, u3 ∃w1, w2, w3 (
∧

i≤3

(lh(ui) ≥ 1 ∧ ϕ̃expt
(ui, wi)) ∧ u = u1 + u2 + u3∧

∃s, s1, s2, s3 (s ∈ {at−1}∗ ∧
∧

i≤3

si ∈ {at−1}∗ ∧

∧

i≤3

(wi $ si ∗ at) ∧ s $ s1 ∗ s2 ∗ s3 ∗ at−1at−1) ∧ w $ s ∗ at)].

The first disjunction of the above formula is finite and therefore can be easily
written in the language of FW

t
n. In the next three lines we divide u into three

words: u1, u2, u3, for which we can find the value of expt using the formula

59

ϕ̃expt
. Then we construct the value expt(u) from values expt(u1), expt(u2)

and expt(u3). The correctness of this formula follows from the fact that if ui
is a word such that 2num(u1) < num(u) then 2lh(expt(u1)) < lh(expt(u)) ≤
lh(MAX). Thus expt(u1), expt(u2) and expt(u3) are short enough to find
them by means of a formula ϕ̃expt

. �

As the final lemma we state

Lemma 3.37 FM((ω,BITt)) is definable in FM(FW
t).

Proof. Let us observe that the number tk, for k > 0, is represented
by a word ak−1

t−1 at and that numbers itk, for 1 < i < t, are represented by
ai−1a

k−1
t−1 at. Then we have that

• num(u) has the digit 1 on the k-th position in t–ary representation if
and only if ak−1

t−1 at ≤ u < a1a
k−1at or u ends with the word v such

that lh(v) = k + 1 and ata
k−1
t−1 at ≤ v < a1a

k−1
t−1 at.

The dependencies for the digits 2, . . . , t − 1 are a bit less complicated. For
i ∈ {2, . . . , t− 1},

• u has a digit i on the k–th position in its t–ary representation if and
only if u ends with a word v such that ai−1a

k−1
t−1 at ≤ v < aia

k−1
t−1 at

and finally

• u has the digit 0 on the k–th position in its t–ary representation if
and only if u ends with a word v such that at−1a

k−1
t−1 at ≤ v < ata

k−1
t−1 at.

Therefore, we can express that u has 1 on the position w by a formula
Digit1(w, u) of the form

∃s {expt(w) $ s∧ [(s ≤ u < a1 ∗ s)∨∃v∃v′ (v′ ∗ v $ u∧ at ∗ s ≤ v < a1 ∗ s)]}.

Formulas Digiti(w, u), for i ∈ {2, . . . , t − 1} expressing that u has i on
the position w have the form,

∃s∃v∃v′ (expt(w) $ s ∧ v′ ∗ v $ u) ∧ ai−1 ∗ s ≤ v < ai ∗ s).

Consequently, Digit0(w, u), with the obvious meaning, is a formula

∃s∃v∃v′ (expt(w) $ s ∧ v′ ∗ v $ u ∧ at−1 ∗ s ≤ v < at ∗ s).

The previous lemmas assure that all predicates used in formulas Digiti can
be expressed by means of concatenation.

60

Now we can write a formula for BITt(x, y, z). It has the form

(z = λ ∧ Digit0(x, y)) ∨ (
∨

0<i<t

(z = ai−1 ∧ Digiti(x, y)).

�

Now we are ready to state the main result of this section. Namely, that
concatenation in finite models has the expressive power of the full arithmetic
of addition and multiplication or the arithmetic of hereditarly finite sets.

Theorem 3.38 For each t ≥ 2, both FM(N) and FM(HF) are definable in
FM(FW

t).

Proof. Let t ≥ 2. By theorem 3.22, FM(HF) is definable in FM(N) and
by theorem 3.25, FM(N) is definable in FM((ω,BITt)). The relation of de-
finability is transitive so, to prove the theorem, it suffices to note that, by
lemma 3.37, FM((ω,BITt)) is definable in FM(FW

t). �

In the last section of Barrington, Immerman and Straubing [1], the au-
thors put the question about relations other than BIT having the same ex-
pressive power in finite models as arithmetic of addition and multiplication.
In this section we have shown that concatenation has the expressive power
of the full arithmetic, too.

All three structures, N , HF and FW
t, are considered as fundamental

arithmetical structures and each of them was known to be definable in any
other. Now we know that all these definability results carry over into the
finite models framework.

61

62

Chapter 4

Representing concepts in finite
models

4.1 Representing computations in finite mod-

els

One of the most fruitful ideas in logic was the description of computations
in various logical formalisms. We can recall the formalism related to Turing
machines as well as that of ∆1–definable arithmetical functions or terms in
lambda calculus. This idea was behind Church’s proof of undecidability of
first order logic and Trachtenbrot’s proof of undecidability of tautologies of
first order logic in finite models. We will present now the main concepts
needed to carry out such a description and we will fix some conventions. The
technical details of the description and the proofs of main lemmas will be
given in the appendix, because they are not crucial for the following parts
of the work. Though their development is very fascinating it may be safely
skipped by a reader familiar with these notions.

4.1.1 Describing computations

Let H = (Q,Σ,Γ, δ, qS, qA) be a Turing machine, as in section 2.3. For
simplicity we assume that Q = {q1, . . . , qn}, qS = q1, q2 = qA, Σ = {0, 1},
Γ = {0, 1, α, β}. Since H is a finite object, we can fully describe it by a finite
word. With some ambiguity, we denote this description also by H .

A computation of H on a word w can be seen as the sequence of con-
figurations, C0, . . . , CK , where C0 is the starting configuration and for each
i < K, Ci and Ci+1 describe the consecutive steps in the computation ac-
cording to the function δ and CK describes the final state of computation.

63

Each Ci can be written as

αa1a2 . . . ak−1q 1 . . . 1︸ ︷︷ ︸
m times

qak . . . ar−1ar,

where αa1 . . . ar is the word written on the tape, H is in the state qm and the
string q1 . . . 1q indicates the position of the head of H . To make Ci unique
we assume that a1 . . . ar contains the word w and only those squares outside
w which were earlier visited by H . Now if # is a new fixed symbol then we
can describe a K–step computation of H on w by the following string

H##C0#C1# . . .#CK#.

Now we state the lemma which will be useful in the next chapters. It
describes what can be said about computations in finite models. The main
advantage of this lemma is that it allows to transfer the recursion–theoretic
concepts into the context of finite models. Various versions of it can be found
in many logical textbooks, e.g. [9].

In what follows we use the identification of words and natural numbers.

Lemma 4.1 For each r ∈ ω there is an arithmetical formula Comp(x, y)
such that for each Turing machine H and for each w̄ = w1, . . . , wr, c and
n ≥ c the following holds

c is a computation of H with an input w̄ ⇐⇒ Nn |= Comp[H, code(w̄), c],

where Nn ∈ FM(N) and code is a ∆0 definable function which codes r-tuples
(see an example of such a coding on page 73, definition 4.25). In other words
if n ≥ c, we can correctly recognize the computation c in a finite model Nn.
Moreover, if n < c then, for each a ≤ n,

Nn 6|= Comp[H, code(w̄), a].

Similarly, there is a formula Accept(x, y) such that for each c, each Turing
machine H and each n ≥ c,

c is an accepting computation of H ⇐⇒ Nn |= Accept[H, c].

The proof of the lemma is straightforward albeit technical and tedious.
Since it does not affect our results we give it in the appendix.

The formalization of the concept of computation is the basis for many
theorems in logic. We recall the one which is the most relevant for results
presented in this chapter proven by Trachtenbrot in [51].

Theorem 4.2 ([51]) The set of sentences true in all finite models in a vo-
cabulary containing at least one binary predicate is coRE–complete.

64

4.1.2 Describing computations with oracle

In formalizing the concept of a computation of an oracle Turing machine, H?

(‘?’ stands for an oracle set which should be specified before the computation
starts), one should add to the description of a configuration Ci the content of
the oracle tape in the i–th step of the computation. This can be carried out
in a straightforward way. Then the string H##C0#C1# . . .#CK# encodes
the computation of HA provided that it encodes the consecutive states of the
computation and each oracle answer agrees with the set A.

In finite models, we represent the oracle set by an extension of an ad-
ditional predicate or an extension of a formula. The problem which we
encounter with this approach is that the oracle set can change from one
finite model to the other one. We briefly describe a possible solution for this
problem.

We want to describe in finite models the computation of a machine HA,
where A is an oracle set. Thus, in each finite model Nn we need one additional
relation An (which can also be an extension of an arithmetical formula).
The most natural condition we may put on sets An is that, for each n,
An = A ∩ {0, . . . , n}. However, we will need a weaker condition.

Definition 4.3 Let R ⊆ ωr. We say that the family of relations {Rn}n∈ω,
such that Rn ⊆ {0, . . . , n}r, approximates R in sufficiently large finite models,
or sl–approximates, if for each m there is a K such that whenever k ≥ K
then Rk agrees with R on the set {0, . . . , m}.

Lemma 4.4 Let A be an oracle set and let {An}n∈ω be a family of finite
relations which sl–approximates A. Then for each r there is an arithmetical
formula OComp(x, y, P) such that for each Turing machine H? and for each
c and w̄ = w1, . . . , wr there is N such that for all n ≥ N the following holds

c is a HA–computation with an input w̄ ⇐⇒

(Nn, An) |= OComp[H?, code(w̄), c, P],

where (Nn, An) is the n–th model from FM(N) with additional set An inter-
preting P . In other words, if n ≥ N we can correctly represent the computa-
tion c in a finite model Nn.

Moreover, there is a formula Accept(x, y) which expresses that y is an
accepting computation of x.

The second paragraph of the lemma follows from the fact that for detect-
ing an accepting computation we only need to check the state of the machine
at the end of the computation. Let us observe that we cannot demand, like

65

in lemma 4.1, that a minimal N equals c. It is caused by the fact that even if
the model is big enough to include the code for the computation c the formula
should also verify that the oracle answers agree with the set A. Therefore,
N from the lemma should be chosen in such a way that for all n ≥ N , An
agrees with A on the set of words queried by HA during the computation c.

4.2 Representing arbitrary notions in finite

models

In this section we present the main ideas of Marcin Mostowski presented in
[31] and [32]. He considered there the problem of representing infinite rela-
tions within the family FM(N). The question was motivated by an attempt
to transfer some tools developed for infinite models into finite models the-
ory. The goal was in particular to compare the semantical power of logics
by means of truth definitions. As far as this last problem is concerned the
reader can also consult the paper by Ko lodziejczyk [22].

4.2.1 FM–representability

Definition 4.5 Let K = {Ki}i∈ω be a family of finite models in the same
vocabulary such that |Ki| = {0, . . . , ki}, for a monotone, unbounded sequence
{ki}i∈ω. We call K a good family of finite models.

A formula ϕ(x1, . . . , xn) is satisfied by a1, . . . , an in all sufficiently large fi-
nite models from K, (or in almost all finite models from K), K |=sl ϕ[a1, . . . , an],
if

∃N∀A ∈ K(card(A) ≥ N ⇒ A |= ϕ[a1, . . . , an]).

If the family K is clear from the context we write |=sl ϕ[a1, . . . , an].

From now on, whenever we write K we assume that it is a good family of
finite models. In most cases a family K, from the above definitions, will be
of the form FM(A).

Definition 4.6 Let K be a good family of finite models and let F be a set of
sentences in the vocabulary of K.

By slF (K) we denote the set of sentences from F true in all sufficiently
large models from K,

slF (K) = {ϕ ∈ F : K |=sl ϕ}.

When F is the set of all sentences in a given vocabulary the subscript F will
be omitted.

66

Now we state some basic properties of Th(K) and sl(K), which were
observed in [31] and [32].

Let T be a set of sentences. By Cn(T) we denote the set of all first order
consequences of T . T is closed on Cn if Cn(T) = T . We have the following

Proposition 4.7 ([31]) For each good family of finite models K, Th(K) and
sl(K) are consistent, closed on Cn.

Proof. The statement is obvious for Th(K) so we prove only the case of
sl(K).

To prove the consistency of sl(K), it suffices, by the compactness theorem,
to prove that for every finite F ⊆ sl(K), F is consistent. However, if F =
{ϕ1, . . . , ϕn} then let Ni be such that for each r ≥ Ni, Kr |= ϕi. Such Ni

exists since ϕi ∈ sl(K). Now if N = max{Ni : i ≤ n} then for each r ≥ N ,
Kr |= F . Thus, F is consistent.

Next, if ψ ∈ Cn(sl(K)), then there is a finite F = {ϕ1, . . . , ϕn} ⊆ sl(K)
such that ψ follows from F . Now if N is as in the first part of the proof then
for each r ≥ N , Kr |= ψ. Hence, ψ ∈ sl(K). It follows that Cn(sl(K)) =
sl(K). �

We can reformulate the last fact in the following statement.

Fact 4.8 Let K be a good family of finite models. For each sentence ϕ the
following are equivalent:

(i) ϕ is consistent with sl(K),

(ii) K 6|=sl ¬ϕ,

(iii) for each N there is a r ≥ N such that Kr |= ϕ.

Proof. The equivalence of last two points follows easily from the definition
of |=sl. The equivalence of the first point with the second one follows from
the fact that sl(K) is closed on the consequence operation. �

One of the motivations behind the idea of introducing the theory of suffi-
ciently large finite models in M. Mostowski [31] was that it allows to describe
infinite relations within the family of finite models. We present a definition
given by M. Mostowski in [31] which formalizes a way in which one can think
about infinity in finite models from a given family K.

67

Definition 4.9 ([31]) Let K = {Ki}i∈ω be a good family of finite models.
A formula ϕ(x1, . . . , xr) FM–represents in K a relation R ⊆ ωr if for all
a1, . . . , ar ∈ ω

(a1, . . . , ar) ∈ R ⇐⇒ K |=sl ϕ[a1, . . . , ar]

and
(a1, . . . , ar) 6∈ R ⇐⇒ K |=sl ¬ϕ[a1, . . . , ar].

A relation R ⊆ ωr is FM–representable in K if there is a formula ϕ(x1, . . . , xr)
which FM–represents R in K.

In order to make the concept of FM–representability more flexible to
work with, we recall some modifications or equivalent reformulations of the
original definition given in [31] and [32]. Firstly, let us observe that we can
weaken the equivalences in the last definition to implications.

Proposition 4.10 Let ϕ(x1, . . . , xr) be a formula in the vocabulary of K.
Then ϕ FM–represents R ⊆ ωr in K if and only if for all a1, . . . , ar ∈ ω,

if (a1, . . . , ar) ∈ R then K |=sl ϕ[a1, . . . , ar]

and
if (a1, . . . , ar) 6∈ R then K |=sl ¬ϕ[a1, . . . , ar].

The proposition follows from the fact that for a1, . . . , ar ∈ ω exactly one
of the following holds: (a1, . . . , ar) ∈ R or (a1, . . . , ar) 6∈ R.

Of course it is not the case that each formula FM–represents some rela-
tion. E.g. the formula ∃z(z + z 6= MAX ∧ z + z + 1 = MAX) ∧ x = x is
true about all elements x in models of even cardinality and is false about all
elements x in models of odd cardinality. Therefore, it does not FM–represent
anything. Later, we will estimate the complexity of deciding whether a given
formula FM–represents some relation. Here, we define a notion from [31]
which describes a condition under which a given formula FM–represents
something.

Definition 4.11 A formula ϕ(x1, . . . , xk) is determined in K if for each
a1, . . . , ak ∈ ω, either K |=sl ϕ[a1, . . . , ak] or K |=sl ¬ϕ[a1, . . . , ak].

The next fact follows directly from the definition of FM–representability.

Fact 4.12 A formula ϕ(x1, . . . , xk) FM–represents in K some relation if and
only if ϕ(x1, . . . , xk) is determined in K.

68

If we know that a formula is determined then we can weaken the condition
for FM–representability to only one equivalence. Indeed, it is straightforward
to prove the following.

Proposition 4.13 Let ϕ(x1, . . . , xr) be determined in K. Then ϕ FM–
represents R ⊆ ωr in K if and only if for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R ⇐⇒ K |=sl ϕ[a1, . . . , ar].

Now we will show an upper bound on the complexity of relations which
can be FM–represented.

Definition 4.14 Let A = (ω, R̄). We say that A is recursive if each relation
and operation in A has a recursive graph.

Let us observe, that even if A is recursive the theory of A may be un-
decidable. E.g. N is a recursive model but the problem whether a given
sentence holds in N is undecidable. Nevertheless, it is always the case that
if A is recursive then for each finite model An ∈ FM(A) the theory of An is
decidable uniformly in n. It means that there is an algorithm which decides
on an input (n, ϕ) whether An |= ϕ.

Now we estimate an upper bound on the relations FM–representable in
FM(A) for a recursive model A.

Proposition 4.15 ([31]) Let A = (ω, R̄) be a recursive model. Then each
FM–representable relation in FM(A) is ∆2 in the arithmetical hierarchy.

Proof. Let R ⊆ ωr be FM–representable in FM(A). Then there is a
formula ϕ(x1, . . . , xr) such that for each tuple a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R ⇐⇒ FM(A) |=sl ϕ[a1, . . . , ar].

If we rewrite the right side of this equivalence we get a Σ2–formula

∃N ∀n ≥ N An |= ϕ[a1, . . . , ar].

However, the same procedure can be repeated for the complement of R and
¬ϕ. Since both R and R̄ have Σ2 definitions, R is a ∆2 relation. �

In what follows we present the theorem from M. Mostowski [31] which
states that ∆2 is exactly the family of relations which are FM–representable
in FM(N). Before we state the main theorem we need the following.

69

Lemma 4.16 Let R ⊆ ωr. If R is recursively enumerable (RE) then R is
FM–representable in FM(N).

Proof. Let R ⊆ ωr be RE and let H be a machine which accepts exactly
tuples from R. Then let us consider a formula ϕ(x1, . . . , xr) :=

∃c (Comp(H, code(x1, . . . , xr), c) ∧ Accept(H, c)),

where Comp and Accept are formulas from lemma 4.1. We claim that ϕ
FM–represents relation R. By proposition 4.10 we need to prove that for all
a1, . . . , ar ∈ ω,

if (a1, . . . , ar) ∈ R then FM(N) |=sl ϕ[a1, . . . , ar]

and
if (a1, . . . , ar) 6∈ R then FM(N) |=sl ¬ϕ[a1, . . . , ar].

Let us observe that (a1, . . . , ar) ∈ R if and only if there exists an accepting
computation c of H on a1, . . . , ar. Thus, in each model Nn, for n ≥ c, ϕ is
satisfied by a1, . . . , ar.

If (a1, . . . , ar) 6∈ R then there is no accepting computation of H with
the input a1, . . . , ar. Thus, by properties of Comp stated in lemma 4.1, the
formula ϕ is not satisfied by a1, . . . , ar in any model from FM(N). �

Now we are ready to state the theorem which describes exactly the family
of FM–representable relations. The following theorem has been proven by
M. Mostowski in [31].

Theorem 4.17 ([31]) Let R ⊆ ωr. R is FM–representable in FM(N) if
and only if R is ∆2 in the arithmetical hierarchy.

Proof. By proposition 4.15 we need only to prove that if R ⊆ ωr is ∆2

then it is FM–representable. Firstly, let us recall that, by proposition 2.10,
a relation R is ∆2 if and only if it is decidable by a Turing machine with a
recursively enumerable oracle. Thus, let us assume that there exists a Turing
machine H? and a recursively enumerable oracle A such that L(HA) = R.
By lemma 4.16 there is a formula ϕ(x) such that it FM–represents the oracle
set A. Then let ψ(x1, . . . , xr) be a formula

∃c (OComp(H, code(x1, . . . , xr), c, ϕ) ∧ Accept(H, c)),

where OComp(x, y, z, ϕ) is the formula from lemma 4.4 where in place of P
we substituted ϕ (renaming, if necessary, bound variables of OComp). Now
we show that ψ FM–represents R.

70

Let a1, . . . , ar ∈ ω. Since HA decides R, there is a HA–computation c on
the input a1, . . . , ar. Thus,

(a1, . . . , ar) ∈ R if and only if c is an accepting computation

and

(a1, . . . , ar) 6∈ R if and only if c is a rejecting computation.

The family
{
ϕNi,x

}
i∈ω

sl–approximates A. Thus, by lemma 4.4, there is
N such that for all n ≥ N and all d,

d is a HA–computation on a1, . . . , ar ⇐⇒

Nn |= OComp(x, y, z, ϕ)[H, code(a1, . . . , ar), d],

Then for all n ≥ N ,

Nn |= ψ[H, code(a1, . . . , ar)] ⇐⇒

there is an accepting computation of HA on a1, . . . , ar

and
Nn |= ¬ψ[H, code(a1, . . . , ar)] ⇐⇒

there is a rejecting computation of HA on a1, . . . , ar.

Thus, ψ FM–represents R in FM(N). �

4.3 Characterization of sl(FM(A)) in terms of

ultraproducts

In this section we investigate the relations between theories of sufficiently
large finite models and the ultraproduct construction. We show that each
complete extension of the theory sl(FM(A)) is the theory of a model being an
ultraproduct of the family FM(A). Then at the and of this section, we obtain
additionally that there is a continuum of complete extensions of sl(FM(N)).

We need some definitions and facts from algebra which we briefly recall.
For a complete presentation of these notions see e.g. [2].

Definition 4.18 Let F = {Fi}i∈ω be a family of subsets of ω. We say that
F has the finite intersection property (fip) if for each finite subset of F ,
{F1, . . . , Fk}, the set

⋂
i≤k Fi is not empty.

71

Definition 4.19 A nonempty family F of subsets of ω is a filter if

• for each x, y ∈ F , x ∩ y ∈ F ,

• for each x ∈ F and y ⊆ ω, if x ⊆ y then y ∈ F ,

• ∅ 6∈ F .

A filter F is an ultrafilter if for each x ⊆ ω, either x ∈ F or ω \ x ∈ F . An
ultrafilter is nonprincipal if it does not contain any finite set. It can be shown
(assuming the axiom of choice) that there is a continuum of nonprincipial
ultrafilters.

We use the following important property of families with fip.

Fact 4.20 Let F be a family with fip. Then there exists an ultrafilter con-
taining F .

Definition 4.21 Let U be an ultrafilter and let

Πi∈ωAi = {f : ω −→
⋃

i∈ω

Ai : ∀i f(i) ∈ |Ai|}.

Let ∼ be an equivalence relation on Πi∈ωAi defined as

f ∼ g ⇐⇒ {i : f(i) = g(i)} ∈ U .

An ultraproduct of {Ai}i∈ω and U is the model Πi∈ωAi/U with the universe

|Πi∈ωAi/U | = {[f]∼ : f ∈ Πi∈ωAi}

and in the vocabulary of family {Ai}i∈ω. For a predicate R, a relation
RΠi∈ωAi/U is defined as

RΠi∈ωAi/U ([fi], . . . , [fr]) ⇐⇒ {i : RAi(f1(i), . . . , fr(i))} ∈ U ,

where f1, . . . , fr ∈ Πi∈ωAi and RAi is the corresponding relation from Ai. A
similar convention also applies in the case of function symbols and constants.

It follows from the properties of an ultrafilter that Πi∈ωAi/U is a well
defined model.

We characterize the theory of Πi∈ωAi/U in terms of models Ai and an
ultrafilter U in the following theorem.

72

Theorem 4.22 (Loś theorem) For all ϕ(x1, . . . , xk) and f1, . . . , fk ∈ Πi∈ωAi

it holds that

Πi∈ωAi/U |= ϕ[[f1], . . . , [fk]] ⇐⇒ {i : Ai |= ϕ[f1(i), . . . , fk(i)]} ∈ U .

The first step towards establishing a relation between sl(FM(A)) and
models constructed as ultraproducts is the following fact.

Fact 4.23 For each FM(A) and for each nonpricipial ultrafilter U on ω,

sl(FM(A)) ⊆ Th(Πn∈ωAn/U).

Proof. It suffices to note that each nonprincipial ultrafilter contains all
sets {k ∈ ω : k ≥ N}, where N ∈ ω is fixed. Therefore, if ϕ ∈ sl(FM(A))
then the set of indexes of models in which ϕ is true belongs to U . �

One can obtain even more.

Proposition 4.24 Let T be a complete, consistent extension of sl(FM(A)).
Then there is an ultrafilter U ⊆ P(ω) such that

Πn∈ωAn/U |= T.

Proof. Let T = {ϕ0, ϕ1, ϕ2, . . .} and let ψi =
∧
j≤i ϕj, for i ∈ ω. Consider

a family {Fi}i∈ω such that Fi = {k ∈ ω : Ak |= ψi}. We have that {Fi}i∈ω is
a family of infinite, descending subsets of ω, F0 ⊇ F1 ⊇ F2 ⊇ . . . Since each
ψi is consistent with sl(FM(A)), it follows that each Fi is infinite. Moreover,
for i < j, |= (ψj ⇒ ψi), which implies Fj ⊆ Fi. It follows that {Fi}i∈ω has
the finite intersection property.

Now let U be a nonprincipial ultrafilter containing F and let B = Πn∈ωAn/U .
We claim that B |= T .

Since T is complete it suffices to prove that if ϕ ∈ T then B |= ϕ. Let
ϕ ∈ T . Then ϕ = ϕi0 for some i0 and Fi0 ⊆ {k : Ak |= ϕ} ∈ U . It follows
that B |= ϕ. �

Now we show that there is a formula ϕ(x) such that it can FM–represent
any subset of ω in some complete extension of sl(FM(N)). We can think
about ϕ as a formula which is undetermined for any a ∈ ω. Firstly, we need
the following definition.

Definition 4.25 The pairing function, 〈〉2 : ω2 −→ ω, is defined as

〈x, y〉2 =
(x+ y)(x+ y + 1)

2
+ y.

73

By induction on d ≥ 2, we define a d–ary function

〈〉d : ωd −→ ω

which enumerates the set of d–tuples of integers.
If 〈〉d : ωd −→ ω is defined then 〈〉d+1 : ωd+1 −→ ω is defined as

〈x1, . . . , xd+1〉d+1 = 〈x1, 〈x2, . . . , xd+1〉d〉2.

Usually the index d will be omitted.

For each d ≥ 2, 〈〉d : ωd −→ ω is a bijection. Thus, we can think about
〈〉d as an enumeration od d-tuples of integers. E.g. 〈〉2 enumerates pairs in
the following order:

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), (0, 4), . . .

Let us observe that for each d the graph of the function 〈〉d is ∆0 definable.
It follows that there is a formula ϕ〈〉d such that in each finite model from
FM(N) it defines a restriction of the graph of 〈〉d to the universe of this
model.

Theorem 4.26 There exists ϕ(x) such that for each A ⊆ ω there is an
ulrafilter U such that

A = {a ∈ ω : Πn∈ωNn/U |= ϕ[a]},

where a is defined as an equivalence class of the function

fa(i) =

{
0 if i < a,
a otherwise.

Proof. To start with, we define the family of sets {Xi}i∈ω such that

• Xi ⊆ ω,

• for each sequence n1, . . . , nk+m of pairwise different integers

⋂

1≤i≤k

Xni
∩

⋂

1≤i≤m

(ω \Xnk+i
)

is infinite.

74

We take
Xi = {x : ∃z1 ≤ x∃z2 ≤ x(x = 〈z1ppi

i , z2〉)},
where pk is the k-th prime number. To see that {Xi}i∈ω has the desired
properties let n1, . . . , nk+m be a sequence of pairwise different integers. Then⋂

1≤i≤kXni
∩ ⋂

1≤i≤m(ω \ Xnk+i
) contains each number 〈Πi≤kp

pni
ni , y〉. This

property of the family {Xi}i∈ω guarantees that for each ε : ω −→ {0, 1} the

family {Xε(i)
i }i∈ω, where

Xa
i =

{
Xi if a = 1,
ω \Xi if a = 0,

has the finite intersection property. Consequently, there is an ultrafilter in
which this family is contained.

Now we construct the formula ϕ(x). By pr(x, y) we denote the functional
relation y = ppx

x . pr is ∆0 definable so its graph is uniformly definable in each
finite model Ni. By the time this thesis has been finished it is still unknown
whether the relation “y is the x-th prime” is ∆0. However, we can ∆0 define
px in the formula pr(x, y) using y = ppx

x as a bound for quantifiers.
Let ϕ̃(x, y) be the following formula

∃z∃z1∃z2(pr(x+ 1, z) ∧ y = 〈z1z, z2〉).

For each finite model Nk,

ϕ̃Nk,x,y = {(a, b) : b ∈ Xa} ∩ |Nk|.

As ϕ(x) we take ϕ̃(x,MAX). Then for a ∈ ω,

Xa = {k ∈ ω : Nk |= ϕ[a]}.

Now we show that ϕ satisfies the assertion of the theorem.
Let A ⊆ ω and let ξA : ω −→ {0, 1} be the characteristic function of A,

ξA(i) =

{
1 if i ∈ A,
0 otherwise.

Then there exists a nonprincipial ultrafilter U containing the family {XξA(i)
i }i∈ω.

For proving the theorem it suffices to observe that, for each a ∈ ω, we have
the following equivalence:

75

a ∈ A ⇐⇒ XξA(a)
a ∈ U

⇐⇒ {k : Ak |= ϕ[a]} ∈ U
⇐⇒ Πi∈ωNi/U |= ϕ[[fa]].

�

Theorem 4.26 allows us also to show that there are as many complete
extensions of sl(FM(N)) as it is possible.

Theorem 4.27 There is a continuum complete, consistent extensions of
sl(FM(N)).

Proof. Let ϕ be as in theorem 4.26. Then for each X ⊆ ω there is an
ultrafilter UX such that ϕ defines X in Πn∈ωNn/UX

. Of course, for different
subsets X and Y theories of models AX = Πn∈ωNn/UX

and AY = Πn∈ωNn/UY

are different because ϕ defines X in AX and Y in AY . Since there is a con-
tinuum different subsets of ω, the theorem is proven. �

76

Chapter 5

Other methods of representing
concepts

In this chapter we consider various weakenings of the concept of FM–repre-
sentability. They allow to estimate the complexity of some families of formu-
las defined by their semantical properties in finite models. They also show
how we can extend the family of relations representable in finite models if
we weaken the constrains put on the way of representing them. Therefore,
in some sense, we are able to describe in finite models not only ∆2 relations
but also relations which are Σ2 or Π3 in the arithmetical hierarchy.

The results presented in this section are published in M. Mostowski and
Zdanowski [35].

5.1 Weak FM–representability

The first natural weakening of the concept of FM–representability is as fol-
lows.

Definition 5.1 Let K = {Ki}i∈ω be a family of finite models in the same
vocabulary such that |Ki| = {0, . . . , i}.

A formula ϕ(x1, . . . , xr) weakly FM–represents in K a relation R ⊆ ωr if
for all a1, . . . , ar ∈ ω

(a1, . . . , ar) ∈ R ⇐⇒ K |=sl ϕ[a1, . . . , ar].

A relation R ⊆ ωr is weakly FM–representable in K if there is a formula
ϕ(x1, . . . , xr) which weakly FM–represents R in K. We write WFM(K) for
the family of relations which are weakly FM–representable in K. In the most
interesting case when K = FM(N) we simply write WFM.

77

It follows directly from definition 5.1 that if a relation is in WFM then
it admits a Σ2 definition. Below, we show that the converse of this fact also
holds. In the first step, we write a formula which weakly FM–represents
in FM(N) a Σ2–complete set. In the second step, we show that the WFM
family is closed on many–one Turing reducibilities.

It was stated in subsection 2.3.2 that the set of Turing machines which
have a finite domain is Σ2–complete.

Lemma 5.2 Fin is weakly FM–representable.

Proof. The formula ϕ(x) which weakly FM–represents Fin can be taken as

¬∃y Comp(x, y,MAX),

where Comp is the formula from lemma 4.1. ϕ says that MAX is not a
computation of a machine x. We use the properties of Comp stated in lemma
4.1 to show that the above formula weakly FM–represents Fin.

If H ∈ Fin then there is a bound N on the size of a computation of H .
Therefore, in each model Nn, for n > N , MAX is not a code of a computa-
tion of H and Nn |= ϕ[H]. On the other hand, if H 6∈ Fin then there is a
sequence {ci}i∈ω of computations of H such that ci < ci+1. Thus, for each
i ∈ ω, Nci |= ¬ϕ[H] and FM(N) 6|=sl ϕ[H]. �

Now we can easily characterize the complexity of deciding whether a
sentence ϕ holds in almost all finite models FM(N). The following theorem
has been proven by M. Mostowski and Zdanowski in [35].

Theorem 5.3 ([35]) sl(FM(N)) is Σ0
2–complete.

Proof. From the definition of |=sl we have that sl(FM(N)) is Σ0
2. To show

that it is Σ0
2–complete let ϕ(x) be a formula which weakly FM–represents

the Σ0
2–complete set Fin. Then for each H ∈ ω,

H ∈ Fin ⇐⇒ ϕ(H) ∈ sl(FM(N)).

Hence, the mappingH 7→ ϕ(H) is a many–one reduction of Fin to sl(FM(N)).
This proves that sl(FM(N)) is a Σ0

2–complete set. �

Let us observe that the above theorem can be used to prove the following
variation on Trachtenbrot’s theorem.1

1The theorem below is not a reformulation of Trachtenbrot’s theorem. However, it has
a smimilar aim of describing the complexity of some sets of first order formulas defined
semantically in finite models.

78

Theorem 5.4 The set of first order sentences which are true in all but fi-
nitely many finite models is Σ0

2–complete.

Proof. The set of first order sentences which are satisfied in almost all finite
models is Σ0

2. The Σ0
2 definition of this set states that, for a given sentence

γ, there is N such that in all finite models of cardinalities greater than N , γ
is satisfied. So it suffices to prove that it is Σ0

2–complete.
Let Ψ be a sentence which characterizes up to isomorphism finite models

from FM(N) (see proposition 3.11). Then for each finite model M ,

M |= Ψ ⇐⇒ ∃A ∈ FM(N)M ∼= A.

Let ϕ(x) be a formula which weakly FM–represents Fin. Then the mapping
H 7→ ¬Ψ ∨ ϕ(H) is a reduction of Fin to the problem from the theorem.
Indeed, for each H , the formula ¬Ψ ∨ ϕ(H) is true in all models which do
not belong to FM(N). Therefore, it is true in almost all finite models ex-
actly when it is true in almost all finite models from FM(N). Since ϕ weakly
FM–represents Fin, the latter is equivalent to H ∈ Fin. �

The next lemma is of a more general interest for us. It allows to show in
a uniform way that certain classes of relations representable in finite models
are closed on recursion theoretic reducibilities.

Lemma 5.5 Let f : ωk −→ ωm be a total function in ∆0
2. Then for each

formula ϕ(x1, . . . , xm) there exists a formula ψ(z1, . . . , zk) such that for each
ā = a1, . . . , ak ∈ ω,

FM(N) |=sl (ψ(z1, . . . , zk) ≡ ϕ(x1, . . . , xm))[ā/z̄, ~f(ā)/x̄].

Proof. We consider only the case for ϕ(x) and f : ω −→ ω. The general
case can be obtained by considering instead of a formula ϕ(x1, . . . , xm) a
formula

ϕ′(x) := ∃x1 . . . ∃xm(x = 〈x1, . . . , xm〉m ∧ ϕ(x1, . . . , xm)).

Let f : ω −→ ω be a total ∆0
2 function. Thus, its graph Gf = {(a, b) :

b = f(a)} is FM–representable, say, by a formula ϕf(x, y). Then let γ(x, y)
be the following formula

ϕf (x, y) ∧ ∀y′(y′ < y ⇒ ¬ϕf (x, y′)).

We claim that for all a, b ∈ ω,

|=sl γ(x, y)[a, b] ⇐⇒ b = f(a). (*)

79

To see the equivalence let N be such that in all models of cardinality at
least N ϕf correctly represents Gf on the set {0, . . . ,max{a, f(a)}}. Then
for each n ≥ N ,

Nn |= ϕf [a, f(a)] and for all c < f(a), Nn |= ¬ϕf [a, c].

It follows that in each model Nn, where n ≥ N , f(a) is the minimal element
b such that Nn |= ϕf [a, b]. Hence, the equivalence holds.

Then let ψ(z) be
∃y(γ(z, y) ∧ ϕ(y)).

For all a ∈ ω we have the following sequence of equivalent statements

|=sl ψ[a] ⇐⇒ |=sl ∃y(γ(z, y) ∧ ϕ(y))[a], and by (*),

⇐⇒ |=sl ϕ(y)[f(a)].

�

As a consequence of the last lemma we can state the following.

Lemma 5.6 The family WFM is closed on many–one Turing reducibilities.

Proof. For simplicity we consider only the case for relations of arity one.
Let R ⊆ ω be weakly FM–representable by a formula ϕR(x) and let S be
many–one reducible to R. Thus, there is a recursive function f : ω −→ ω
such that for all a ∈ ω,

a ∈ S ⇐⇒ f(a) ∈ R.

The graph of f is recursive, so, by lemma 5.5, we can take a formula
ϕS(z) such that for each a ∈ ω,

|=sl (ϕS(z) ≡ ϕR(x))[a, f(a)].

Then for each a ∈ ω,

|=sl ϕS[a] ⇐⇒ |=sl ϕR[f(a)]

⇐⇒ f(a) ∈ R

⇐⇒ a ∈ S.

Hence, ϕS weakly FM–represents S. �

As a direct consequence of lemmas 5.2 and 5.6 we obtain the theorem
which characterizes the family of weakly representable relations in FM(N).
The following theorems were proven by M. Mostowski and Zdanowski in [35].

80

Theorem 5.7 ([35]) A relation R ⊆ ωr is weakly FM–representable if and
only if R is Σ0

2 in the arithmetical hierarchy.

As a consequence of the relations between sets in the arithmetical hier-
archy we obtain also

Theorem 5.8 ([35]) Let R ⊆ ωr. R and the complement of R are weakly
FM–representable if and only if R is FM–representable.

5.2 Statistical representability

In this section we consider another possible weakening of the concept of
representability in finite models. The results from this section were published
as a part of M. Mostowski and Zdanowski [35]. Nevertheless, it is based on
the work of the author of this dissertation while the other sections are joint
with M. Mostowski.

Definition 5.9 Let ϕ(x1, . . . , xr) be a formula in the vocabulary of FM(A)
and a1, . . . , ar ∈ ω. By the n-th density of ϕ[a1, . . . , ar] in FM(A),
µn(ϕ[a1, . . . , ar],FM(A)), we mean

µn(ϕ[a1, . . . , ar],FM(A)) =
card{i : i < n ∧ Ai |= ϕ[a1, . . . , ar]}

n
,

By µ(ϕ[a1, . . . , ar],FM(A)) we denote, if it exists,

µ(ϕ[a1, . . . , ar],FM(A)) = lim
n→∞

µn(ϕ[a1, . . . , ar],FM(A)).

When it does not lead to any misunderstandings we omit the second parameter
in µ(ϕ[a1, . . . , ar],FM(A)).

Definition 5.10 The relation R ⊆ ωr is statistically representable in FM(A)
if there is a formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such
that for a1, . . . , ar ∈ ω,

• there exists µ(ϕ[a1, . . . , ar],FM(A)),

• (a1, . . . , ar) ∈ R ⇐⇒ µ(ϕ[a1, . . . , ar],FM(A)) = 1,

• (a1, . . . , ar) 6∈ R ⇐⇒ µ(ϕ[a1, . . . , ar],FM(A)) = 0.

The family of relations which are statistically representable in FM(A) is de-
noted as SR(FM(A)).

81

We say that the set R ⊆ ωr is weakly statistically representable in FM(A) if
there is a formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such
that for all a1, . . . , ar ∈ ω,

• if (a1, . . . , ar) ∈ R then µ(ϕ[a1, . . . , ar],FM(A)) exists,

• (a1, . . . , ar) ∈ R ⇐⇒ µ(ϕ[a1, . . . , ar],FM(A)) = 1.

The family of relations which are weakly statistically representable in FM(A)
is denoted by WSR(FM(A)).

When A = N we simply write SR and WSR.

Lemma 5.11 Let A = (ω, S̄) be a recursive model and let R ⊆ ωr. If R is
statistically representable in FM(A) then it is ∆0

2.

Proof. Let us assume thatR ⊆ ωr is statistically represented by ϕ(x1, . . . , xr).
We will give a Σ2 definition of R. For each tuple ā,

(ā) ∈ R ⇐⇒ ∃N∀n ≥ Nµn(ϕ(ā)) > 1/2.

The formula on the right side of the equivalence is Σ2, so it remains to show
that it is indeed a good description of R. If the right side of the equivalence
holds than of course µ(ϕ(ā)) ≥ 1/2. But, by the definition of statistical
representability, µ(ϕ[ā]) ∈ {0, 1}. So µ(ϕ[ā]) = 1 and (ā) ∈ R. On the other
hand, if (ā) ∈ R then µ(ϕ[ā]) = 1 and if we choose N in such a way that for
all n ≥ N ,

|1 − µn(ϕ[ā])| < 1/4

then the right side of the equivalence will be satisfied.
In a similar way we can Σ0

2–define the complement of R. Hence, R ∈ ∆0
2.

�

As a consequence of lemma 5.11 and theorem 4.17 we obtain the following.

Theorem 5.12 ([35]) Let R ⊆ ωr. R is statistically representable in FM(N)
if and only if R is FM–representable in FM(N).

Since the family SR coincides (over FM(N)) with FM–representable re-
lations one could expect that relations in WSR are exactly those which are
weakly FM–representable in FM(N). On the other hand, the quantifier prefix
in the expression µ(ϕ) = 1 suggests that WSR relations are exactly relations
which are Π3 in the arithmetical hierarchy. We will show below that the
second guess is correct. Additionally, we obtain also that the set of sentences
ϕ such that µ(ϕ,FM(N)) = 1 is Π3–complete.

82

Lemma 5.13 Families SR and WSR are closed on many–one Turing re-
ducibilities.

Proof. Let R ⊆ ωr be in one of the families mentioned in the lemma and
let ϕ(x1, . . . , xr) be a formula which, in a suitable way, represents R. Then
let S ⊆ ωs be reducible to R via a recursive function f : ωs −→ ωr and let
ψ(z1, . . . , zs) be a formula from lemma 5.5. Then for each ā = a1, . . . , as ∈ ω,

FM(N) |=sl (ψ(z̄) ≡ ϕ(x̄))[ā/z̄, f(ā)/x̄].

Thus, on all but finite number of models from FM(N), ψ with parameters ā
behaves as ϕ with parameters f(ā). In particular,

• µ(ψ[ā]) exists if and only if µ(ϕ[f(ā)]) exists,

• if µ(ψ[ā]) exists then µ(ψ[ā]) = µ(ϕ[f(ā)]).

Since f is the reduction of S to R, it follows that S belongs to the same class
of represented relations as R. �

It was stated in subsection 2.3.2 that the set

CoInf = {H : ω \WH is infinite} .

is Π3–complete. Now our aim is to show that this set is weakly statistically
representable.

Before we present the lemma we define some auxiliary notions. We
write

√
MAX < x for the formula ∀z(xx 6= z). We write Input(c) = n

for ∃H < cComp(H, n, c) and x ∈WH for ∃cComp(H, x, c).

Lemma 5.14 The set CoInf is weakly statistically representable in FM(N).

Proof. We write the formula ϕ(z) :=

∀n∀c[{
√

MAX < c ∧ n = Input(c) ∧ ∀c1(
√

MAX < c1 ⇒ n ≤ Input(c1))} ⇒
∀x{([(x 6∈Wz ∧ x < n) ∨ x = 1] ∧ ∀y((y 6∈Wz ∧ y < n) ⇒ y ≤ x)) ⇒

¬(x|MAX)}]

with the property that for all H ∈ ω,

H ∈ CoInf if and only if µ(ϕ,H) = 1. (*)

The formula ϕ in a model on {0, . . . , m− 1} looks for a computation c greater
than

√
m− 1 with the smallest imput n. Then it takes the greatest x < n

83

which is not an input of any H–computation in the model (or it takes 1 if
there is no such an x) and forces its own density close to 1− 1/x. If there is
no such a computation c then ϕ is simply true. Now we show (*).

Let us assume that WH is coinfinite and let ε > 1/k such that k 6∈ WH .
Let N = max{c2 : Input(c) ≤ k} + 1. We show that for all m > N ,
|1 − µm(ϕ,H)| < ε. In the model Nm there is no computation c such that√
m− 1 < c and Input(c) < k. Thus, ϕ forces its density at least to 1 − 1/k

in models greater than N .
Now let us assume that WH is cofinite and let k = max(ω\WH). Let us fix

an arbitrary large N and c0 = max{c : Input(c) ≤ N}. Starting from Nc0+1

up to Nc20
, ϕ forces its density to 1−1/k. In follows that |1−µc20(ϕ,H)| ≥ 1/

2k. �

As a direct consequence of last two lemmas we obtain the following.

Theorem 5.15 ([35]) The family of relations which are weakly statistically
representable in FM(N) is exactly the family of Π3 relations in the arith-
metical hierarchy.

The lemma 5.14 enables us to characterize the complexities of the set of
sentences which has density 1 in FM(N).

Theorem 5.16 ([35]) The set {ϕ : µ(ϕ,FM(N)) = 1} is Π3–complete.

84

Chapter 6

Some arithmetics of finite
models

As we have already seen the properties of finite models for arithmetic differ
significantly from the properties of corresponding infinite models. In this
chapter we investigate relations between various finite models arithmetics.
Up to now, we considered arithmetics which are equivalent (via some ex-
act interpretation) to the domain of addition and multiplication. Now we
will also consider some weaker sets of basic notions like sole multiplication,
coprimality or exponentiation.

The main results of this chapter are the following. We show that ∃∗∀∗

theory of multiplication in finite models is undecidable while ∃∗ theory of mul-
tiplication with order is decidable (for families ∃∗∀∗ and ∃∗ see the definition
on page 12). We also show that the relations which are FM–representable in
FM((ω,×)) are exactly the same as in FM(N). Then we show that exponen-
tiation in finite models is strictly weaker than multiplication. In particular,
the former is definable from the latter. It can be contrasted with the situa-
tion in the infinite domain where exponentiation is semantically equivalent
to addition and multiplication. Then we consider relations between sets of
spectra for the above arithmetics and show strict inclusions between them.

These results can be seen also as finite models analogs of investigations
on decidability and definability among various sets of arithmetical relations
in the infinite model. The state of the knowledge in the classical case is
presented e.g. in [24].

85

6.1 Arithmetics with the ordering relation

In this section we consider the situation when the standard ordering is de-
finable in a model A = (ω,R) from which we construct the family of finite
models. We show that in this case FM(A) is easily interpretable in A. As
we see in the subsequent sections if it is not the case then the situation may
change drastically.

The results of this section are standard although, as far as we know, they
were never presented in a complete form.

Lemma 6.1 For every formula ϕ(x1, . . . , xn) in the language of FM(A)
there is a formula ϕ∗(x1, . . . , xn, y) in the language of (A,≤), where y is
a new variable, such that for each a1, . . . , ak ≤ n,

An |= ϕ[a1, . . . , ak] if and only if (A,≤) |= ϕ∗[a1, . . . , ak, n].

Proof. A translation procedure is defined by induction on the complexity
of ϕ. Let y be a variable which does not occur in ϕ. Firstly, we replace each
occurrence of MAX in ϕ by y. We may assume that each atomic formula
which occurs in ϕ is of the form: Pj(t1, . . . , tr), Fk(t1, . . . , tm) = t0 or t0 = t1,
where t0, t1, . . . , tmax{r,m} are variables or constants.

An atomic formula Pj(t1, . . . , tr) is translated into itself,

(Pj(t1, . . . , tr))
∗ := Pj(t1, . . . , tr).

Next we define

(Fk(t1, . . . , tm) = t0)∗ :=

[(Fk(t1, . . . , tm) ≤ y ∧ Fk(t1, . . . , tm) = t0) ∨ (y ≤ Fk(t1, . . . , tm) ∧ t0 = y)]

and
(t = t′)∗ := (t ≤ y ∧ t = t′) ∨ (y ≤ t ∧ y ≤ t′).

The inductive step is as follows:

(ϕ ∧ ψ)∗ := ϕ∗ ∧ ψ∗,

(¬ϕ)∗ = ¬ϕ∗,

(∃xϕ)∗ = ∃x ≤ yϕ∗.

A standard argument shows that the equivalence from the lemma holds. �

From lemma 6.1 we can conclude the following theorems proven by Kry-
nicki and Zdanowski in [25].

86

Theorem 6.2 ([25]) Th(FM((A,≤))) and sl(FM((A,≤))) are recursively
reducible to Th((A,≤)). In particular, if Th((A,≤)) is decidable then
Th(FM((A,≤))) and sl(FM((A,≤))) are decidable.

Theorem 6.3 ([25]) 1. Every relation FM–representable in FM(A) is
definable in (A,≤).

2. If Th((A,≤)) is decidable then each FM–representable relation in A is
recursive.

By theorem 6.3 we can give a large number of examples of arithmetics
which are decidable in finite models. Let k ≥ 2 and Vk : ω −→ ω be a
function which maps an integer a to the greatest power of k which divides a
and Vk(0) = 1, e.g. V2(12) = 4. We call the structure (ω,+, Vk) the Büchi
arithmetic of base k. Büchi proved (see [5]) that for every k ≥ 2, Büchi
arithmetic of base k is decidable.

Let expn be the exponentiation function with a fixed base n, expn(x) =
nx. It was proven by Semenov in [43] that (ω,+, expn) has a decidable theory.

Theorem 6.4 ([25]) Th(FM(A)) and sl(FM(A)) are decidable for A be-
ing one of the following models: FM((ω,<)), FM((ω,+)), FM((ω,+, expn)),
FM((ω,+, Vk)), for each natural number k ≥ 2.

6.2 Interpretability on initial segments

In this section we introduce some other notions of interpretation which are
convenient for finite arithmetics. Our main aim is to have a suitable tool for
transferring results, like e.g. the undecidability, from one FM–arithmetic,
say FM(A), to the other one which interprets FM(A) in a suitable way.

Definition 6.5 FM(A) is sl–interpretable in FM(B) if there exists a func-
tion f : ω −→ ω and an interpretation ϕ̄ of FM(A) in FM(B) such that:

• f [ω] is cofinite,

• for each i ∈ ω, f−1({i}) is finite,

• for each n, Af(n)
∼= Iϕ̄(Bn).

If ϕ̄ is an order preserving interpretation of Af(n) in Bn, that is for each n,

Af(n) = Iϕ̄(Bn)

then we call ϕ̄ an order preserving sl–interpretation.

87

A function f from the above definition tells us which model is interpreted
in a given model Bn, it is simply Af(n). Thus, it is essentially the function
Iϕ̄ described on picture 2.1 on page 20 for K1 = FM(A) and K2 = FM(B).

A similar notion of interpretation called IS–interpretability was formu-
lated by M. Mostowski and A. Wasilewska in [33] and was also used implicitly
in [25].

Definition 6.6 FM(A) is IS–interpretable in FM(B) if there exists an in-
terpretation ϕ̄ and a monotonic, unbounded function f : ω −→ ω such that
for each n ∈ ω,

Af(n) = Iϕ̄(Bn).

Let us observe that there may be sl–interpretations which are not IS–
interpretions, and also IS–interpretations which are not sl–interpretations.
In the present section we defined sl–interpretations because if there is such
an interpretation of FM(A) in FM(B) then we can easily transfer properties
of one family onto the other one, see theorems 6.10 and 6.11. Thus, the
notion of sl–interpetation has an appeal of allowing quite general reasonings
about families of the form FM(A).

On the other hand, it will often be convenient for us to give an IS–
intepretation of FM(N) in FM(A). However, in such a case we will also
be able to construct an sl–interpetation, see proposition 6.12. Thus, by
proposition 6.12, we may profit from both notions and use the one which is
more convenient for us.

Now we provide an example of an order preserving sl–interpretation (and
also IS–interpretation) which will be useful for us in the next sections.

Lemma 6.7 Let A = (ω,≤), B = (ω,×) and let

ϕ≤(x, y) := ∃z(zx 6= MAX ∧ zy = MAX) ∨ x = y.

For all n, for all a, b <
√
n,

a ≤ b if and only if Bn |= ϕ≤[a, b].

Proof. If the right side of the equivalence holds then a = b or a and b are
differentiated by an element of An, say z. Since az < n ≤ bz, it follows that
a ≤ b.

In proving the other implication we may assume that a 6= b. Then let k
be the smallest element of An such that bk ≥ n. Since b2 < n, b < k. It
follows that

ak ≤ (b− 1)k ≤ bk − k ≤ bk − b ≤ b(k − 1) < n.

88

Therefore, k as above can be taken as a witness for z in ϕ≤. �

For a further reference let us observe that the same property holds also
for a ∀∗ formula ϕ′

≤(x, y) defined as

∀z(zx = MAX ⇒ zy = MAX).

Thus, for a ∀∗ formula

ϕS(x, y) := x 6= y ∧ ∀z((ϕ≤(x, z) ∧ z 6= x) ⇒ ϕ′
≤(y, z))

we have the following.1

Lemma 6.8 For all n and a, b <
√
n,

b = a+ 1 if and only if An |= ϕS[a, b].

Proposition 6.9 Let A = (ω,≤) and B = (ω,×). There is an interpre-
tation ϕ̄ of FM(A) in FM(B) such that ϕ̄ is both: an order preserving sl–
interpretation and an IS–interpretation.

Proof. As a function f from definition 6.6 we take

f(n) =
⌊√

n− 1
⌋
.

The interpretation is the sequence (ϕU , ϕ≤, ϕMAX). As the formula defining
the universe we take

ϕU(x) := xx 6= MAX.

The formula defining the ordering ϕ≤ is the formula from lemma 6.7. ϕMAX(x)
is

xx 6= MAX ∧ ∀z(zz 6= MAX ⇒ ϕ≤(z, x)).

The elements of An which satisfy ϕU are just elements {0, . . . , f(n)}. It
follows from lemma 6.7 that ϕ≤ defines the standard ordering on this set.
Finally, ϕMAX chooses the maximal element of this set – f(n). To sum up we
defined an IS–interpretation of FM(A) in FM(B). The form of the function
f assures that it is also an sl–interpretation. �

The existence of an interpretation between two families of models should
allow to infer some relations between these families. The next theorem fulfills
this expectation.

1Of course ϕS is not a ∀∗–formula when we consider the form given above but it can
be easily rewritten in such a form.

89

Theorem 6.10 Let A and B be such that FM(A) is sl–interpretable in
FM(B). Then sl(FM(A)) is many–one reducible to sl(FM(B)) and Th(FM(A))
is many–one reducible to Th(FM(B)).

Proof. The proof uses standard techniques introduced in chapter 2.
Let FM(A) be sl–interpretable in FM(B) with an interpretation ϕ̄ and

let f be a function from definition 6.5. Then for any sentence ψ in the
vocabulary of FM(A),

ψ ∈ sl(FM(A)) if and only if Îϕ̄(ψ) ∈ sl(FM(B)).

One should be a bit more careful with Th(FM(A)) and Th(FM(B)). Let
k be such that for all n ≥ k there exists i such that f(i) = n. In other words,
any model An, for n ≥ k, is interpreted in some model from FM(B). Then
let ψ be a sentence in the vocabulary of FM(A) and let

b(ψ, k) =

{
⊥ if ∃i < k, Ai 6|= ψ,
> otherwise.

The following equivalence exhibits a many–one reduction from Th(FM(A))
to Th(FM(B)):

ψ ∈ Th(FM(A)) if and only if pÎϕ̄(ψ) ∧ b(ψ, k)q ∈ Th(FM(B)).

�

The existence of an order preserving sl–interpretation between FM(A)
and FM(B) allows us to compare also the families of FM–representable rela-
tions in both families.

Theorem 6.11 Let A and B be such that there is an order preserving sl–
interpretation of FM(A) in FM(B). For each R ⊆ ωr, if R is FM–representable
in FM(A) then R is FM–representable in FM(B).

Proof. It is straightforward to see that if ψ(x̄) FM–represents R in FM(A)

and ϕ̄ is an IS–interpretation of FM(A) in FM(B), then Îϕ̄(ψ) FM–represents
R in FM(B). �

To use theorems 6.10 and 6.11 we need to have an sl–interpretation. In
the following sections it will often be often more convenient to give an IS–
interpretation of FM(N) in a given arithmetic FM(A). As the following
proposition states, in such a case the existence of an IS–interpretation is
a sufficient condition to conlude the existence of an order preserving sl–
interpretation.

90

Proposition 6.12 Let ϕ̄ be an IS–interpration of FM(N) in FM(A). Then
there is an order preserving sl–interpretation ψ̄ of FM(N) in FM(A).

Proof. Let ϕ̄ and f be as in definition 6.6. We find a function g : ω −→ ω
and an interpretation ψ̄ such that

• g is monotonic and unbounded,

• ∀n |g(n+ 1) − g(n)| ≤ 1,

• ∀nNg(n) = Iψ̄(An).

It follows, by the three conditions above, that ψ̄ is an order preserving sl–
interpretation of FM(N) in FM(A).

Now we construct g and ψ̄. As an intermediate step we construct a
function h : rg(f) −→ ω such that

(i) h is monotonic and unbounded,

(ii) ∀n |h(f(n+ 1)) − h(f(n))| ≤ 1,

(iii) the graph of h is ∆0 definable.

Let us observe that if we have h as above then we can easily construct g and
ψ̄. To construct ψ̄ we could take an interpretation γ̄ of FM(N) in FM(N)
such that for all n,

Nh(n) = Iγ̄(Nn).

Such a γ̄ exists since h is ∆0 definable. Then ψ̄ would be a composition of ϕ̄
and γ̄ and g would be a composition of f and h, that is g(n) = h(f(n)). So,
we need only to show that the function h as above exists.

Let us observe that f is a recursive function. This follows from the fact
that given n we can effectively check what is the cardinality of Iϕ̄(Nn). Thus,
let Hf be a machine which computes f . Moreover, let us require that for each
n, the computation of Hf on input n has a smaller code than the computation
on input n+ 1. This can be achieved e.g. by forcing Hf to compute on input
n all values f(i), for i ∈ {0, . . . , n}. Then let cHf

(n) be a computation of Hf

on the input n. We can define h as

h(n) = max
{
k : cHf

(k) ≤ n
}
.2

Since being a code of a computation is ∆0, the definition of h is also ∆0.
Obviously the properties (i) – (iii) that we put on h are fulfilled,which ends
the proof. �

2Let us observe that our definition of h depends not only on f but also on the form of
the machine Hf .

91

6.3 Undecidable arithmetics of finite models

In this section we consider various arithmetics which are weaker than addition
and multiplication. Nevertheless, we show that in finite models some of
them have the semantical power very close to the arithmetic of addition and
multiplication.

6.3.1 Multiplication in finite models

In the first part of this section we show that the class FM((ω,×)) is not
finitely axiomatizable within the class of all finite models. It can be compared
to the result of Marcin Mostowski from [32] on finite axiomatizability of the
family FM(N) within the class of all finite models, see proposition 3.11. It
may be mentioned that Patrick Cegielski showed in [6], using a different
method, that the theory of (ω,×) is not finitely axiomatizable.

Definition 6.13 Let A = (ω,×) and An ∈ FM(A), where n > 1. By A′
n

we denote a model ({0, . . . , n} ∪ {α},⊗, n) such that

• α 6∈ ω,

• ⊗ = ×n ∪ {(0, α, 0), (α, 0, 0), (1, α, α), (α, 1, α)} ∪ {(a, b, n) : a, b 6∈
{0, 1} ∧ α ∈ {a, b}}, where ×n is the graph of multiplication from An.

It is easy to observe, that α behaves in A′
n like any other prime from

{dn/2e , . . . , n− 1}.

Lemma 6.14 Let A = (ω,×). For each n > 1, for each A′
n and for each

prime p ∈ {dn/2e , . . . , n − 1} there is an automorphism f of A′
n such that

f(a) =





a if a 6∈ {p, α},
p if a = α,
α if a = p.

Lemma 6.15 Let A = (ω,×). For each n,

A′
n
∼= An+1 if and only if n is a prime.

Proof. Let us observe that in any isomorphism between A′
n and An+1 any

prime from A′
n and α can be mapped only to a prime from An+1. Therefore,

if n is a prime then f : |A′
n| −→ |An+1| defined as

f(a) =





a if a < n,
n+ 1 if a = n,
n if a = α.

92

is an isomorphism between A′
n and An+1. On the other hand, if n is com-

posite then there is too few number of primes in An+1 to map onto them all
primes from A′

n and α. �

Let π(x) be the following function

π(x) =
∑

p < x
p is prime

1.

The prime number theorem states that limx→∞ π(x)/(x/ ln(x)) = 1 (see e.g.
[38]). We need an easy consequence of the prime number theorem.

Fact 6.16 For all k there is n such that for all s ≥ n there are k primes in
{s, . . . , 2s}.

Lemma 6.17 Let A = (ω,×). Let n be such that there are k primes in
{dn/2e , . . . , n− 1}. Then An ≡k A′

n

Proof. It suffices to show that Eros has a winning strategy in k–moves
Ehrenfeucht–Fräısse game between An and A′

n. We split models An and A′
n

into two parts. Let

P1 = {p : p is a prime and p ∈ {dn/2e , . . . , n− 1},

P2 = P1 ∪ {α}
and

B1 = B2 = ({0, . . . , n} \ P1.

Then |An| = B1∪P1 and |A′
n| = B2∪P2. We refer to B1 and P1 as subsets of

the universe of An and to B2 and P2 as subsets of the universe of A′
n. Then

on sets B1 and B2 Eros’s answers on Ares’s moves are the same elements from
the other structure. If Ares chooses a new element from Pi, i ∈ {0, 1}, then
Eros can answer with an arbitrary element from P1−i which has not been
chosen. Since cardinalities of P1 and P2 are at least k, Eros can maintain
this strategy during k moves of the Ehrenfeucht–Fräısse game. Moreover, at
each stage of the game the set of chosen pairs forms a partial isomorphism
between An and A′

n. Thus, Eros wins. �

Theorem 6.18 Let A = (ω,×). The family FM(A) is not finitely axioma-
tizable within the class of all finite models.

93

Proof. We show that for each k there are two finite models B and C such
that B ≡k C, B ∈ FM(A) and there is no D ∈ FM(A) such that C ∼= D. It
follows that no first order sentence of quantifier rank k axiomatizes FM(A)
within the class of finite models. Since k is arbitrary, FM(A) is not finitely
axiomatizable within finite models.

As B we choose A2n ∈ FM(A) such that, by fact 6.16, there are k primes
in {n, . . . , 2n} and C = A′

2n. Then by lemma 6.17, C ≡k An but there is no
D ∈ FM(A) such that C ∼= D. By a cardinality argument, the only such D
can be A2n+1. However, by lemma 6.15, there is no isomorphism between
A2n+1 and C. �

We need the following theorem proven by Lee in [26].

Theorem 6.19 ([26]) FM(N) is definable in FM((ω,×,≤)).

The following was observed by Schweikardt in [42].

Proposition 6.20 ([42]) FM((ω,≤)) is not definable in FM((N,×)).

It can be observed that a stronger fact holds. Let us remind that ≤X is
the ordering relation on ω restricted to the set X ⊆ ω and that P is the set
of all primes.

Theorem 6.21 FM((ω,≤)) is not definable in FM((N,×,≤P)).

Proof. Since addition is definable in finite models from multiplication and
ordering (see theorem 6.19) it suffices to show that addition is not definable
in FM((ω,×,≤P)).

Let k ∈ ω be such that there are at least 2k+1 + 1 primes in
{dn/2e , . . . , n − 1} and let An ∈ FM((ω,×,≤P)), Bn ∈ FM(N). Then
let

S = {pi, . . . , pj},
be the set of primes in {dn/2e , . . . , n−1} and let p, q be the primes from the
middle of this sequence, that is p = pb(j−i)/2c and q = pb(j−i)/2c+1. We show
that no first order formula ϕ(x) of quantifier rank less or equal k differentiates
in An between p and q. That is, if qr(ϕ) ≤ k then

An |= ϕ[p] if and only if An |= ϕ[q].

On the contrary, for infinitely many of corresponding models Bn ∈ FM(N)
the primes p and q are differentiated by a fixed first order formula. Conse-
quently, FM(N) is not definable in FM((ω,×,≤P)).

94

To show the first claim we argue that Eros wins the k–moves game be-
tween (An, p) and (An, q), when we treat p and q as indicated elements. We
split the universe of An into two parts: S = {pi, . . . , pj} and T = |An| \ S.
On T Eros answers for Ares moves with the same elements. Eros treats the
part S as two linear orderings determined in both structures by the mid-
dle primes p and q. Eros can win a k–moves game between corresponding
pairs of orderings in both structures, see fact 2.4. Combining these strategies
Eros wins a k–moves game between (An, p) and (An, q). This is so because
the only properties which differentiate the primes from S are the ordering
properties.

To finish the proof we provide a formula ψ(x) which differentiates between
p and q in infinitely many models Bn. It uses the ordering relation, the
predicate for primes and the predicate EXP(x, y, z) which is interpreted as
the graph of the exponentiation function. All these notions are definable in
Bn. ψ(x) has the form

P (x) ∧ ∃z∃y(EXP(2, z, y) ∧ y ≤ p ∧ ∀w(y ≤ w ≤ x ∧ w 6= p⇒ ¬P (w))).

It states that x is the least prime greater than some power of two. Thus, for
infinitely many n, Bn |= ψ[p]. On the other hand no two consecutive primes
satisfy ψ(x). Thus, if Bn |= ψ[p] then Bn 6|= ψ[q]. �

Let us recall that we know from section 6.2 that there is an IS–interpre-
tation of FM((ω,≤)) in FM((ω,×)).

Combining this result with theorem 6.19 we get the following theorem
given by Krynicki and Zdanowski in [25].

Theorem 6.22 ([25]) There is an IS–interpretation of FM((ω,+,×)) in
FM((ω,×)). Moreover, as a function f from definition 6.6 one can take
f(n) =

⌊√
n− 1

⌋
.

Proof. By lemma 6.7 there is an IS–interpretation of FM((ω,≤)) in
FM((ω,×)) with function f(n) =

⌊√
n− 1

⌋
. By theorem 6.19, once we

have defined ordering, we can also define addition on the ordered part of a
model An ∈ FM((ω,×)). Thus, we get an IS–interpretation as stated in the
theorem. �

By the above result, applying theorems 6.10, 6.11 and proposition 6.12,
we obtain the following theorems.

Theorem 6.23 ([25]) 1. Th((ω,×)) is Π1–complete.

95

2. sl(FM((ω,×))) is Σ2–complete.

Theorem 6.24 ([25]) The same relations are FM-representable in
FM((ω,×)) as in FM((ω,+,×)).

The last three theorems were proven in [25] although the term IS or sl–
interpretation was not used there. Later, the analogous results were proven
for the arithmetic of divisibility by M. Mostowski and A. Wasilewska in [33].

Theorem 6.25 ([33]) There is an IS–interpretation of FM((ω,+,×)) in
FM((ω, |)), where | is the divisibility relation. Moreover, as a function f
from definition 6.6 one can take f(n) =

⌊
4
√
n− 1

⌋
.

Let us recall that by ∃∗∀∗ we denote the class of formulas of the form

∃x1 . . .∃xk∀z1 . . .∀znψ,

where ψ is a quantifier free formula.
Now we are going to estimate the undecidability bound for multiplication

in finite models. We show that ∃∗∀∗–prefix gives the undecidable theory of
multiplication. Later, in section 6.4, we show that this bound is optimal.

Theorem 6.26 ([25]) (i) The set of ∃∗∀∗ sentences of arithmetic of mul-
tiplication which are satisfiable in finite models is Σ1–complete.

(ii) The set of ∃∗∀∗ sentences of arithmetic of multiplication which are true
in all sufficiently large finite models is Σ1–hard.

Proof. By Matijasevič theorem the set of sentences of the form

∃x̄f(x̄) = g(x̄),

where f and g are terms of arithmetic which are true in the infinite model is
Σ1–complete.

Terms f and g may contain addition but it can be existentially defined
from multiplication and successor by the identity due to Tarski: for all x, y,
z 6= 0,

x+ y = z if and only if (xz + 1)(yz + 1) = z2(xy + 1) + 1.

It follows that the problem whether the sentence of the form

∃x1 . . .∃xnψ,

96

where ψ is quantifier free in a relational form with only positive occurrences
of × and S, is true in the infinite model is Σ1–complete. We reduce the
last problem to the satisfiability of ∃∗∀∗ sentences in FM((ω,×)) and to
sl∃∗∀∗(FM((ω,×))).

Let A = (ω,×) and let ϕS(x, y) be a ∀∗ formula from lemma 6.8 which
defines the graph of the successor function on {0, . . . ,

⌈√
n− 1

⌉
} part of a

model An. For a formula ∃x1 . . .∃xnψ as above, let ψ′ be the formula which
is obtained from ψ by replacing equations s(xi) = xj with ϕS(xi, xj). Then
let γ be

∃x1 . . .∃xn(
∧

i≤n

xixi 6= MAX ∧ ψ′).

It suffices to show that the following conditions are equivalent:

(i) (ω,×, S) |= ∃x1 . . .∃xnψ,

(ii) γ is satisfiable in FM(A),

(iii) FM(A) |=sl γ.

If (i) then let a1, . . . , an ∈ ω be witnesses for ∃x1 . . .∃xnψ in (ω,×, S).
Then in all models An, where n > (max{a1, . . . , an})2, ϕS represents the
successor function on a1, . . . , an and An |= ψ′[a1, . . . , an]. Thus, FM(A) |=sl

γ.
The implication from (iii) to (ii) is obvious. So, we assume (ii) and show

(i). Let n be such that An |= γ and let a1, . . . , an be witnesses in An for
existential quantifiers in γ. Then n > (max{a1, . . . , an})2 and ϕS defines on
a1, . . . , an the successor function. Thus, by construction of ψ′, a1, . . . , an are
also good witnesses for ψ in (ω,×, S). �

Let us mention that we do not know whether sl∃∗∀∗(FM((ω,×)) is a Σ2–
complete set.

6.3.2 Exponentiation in finite models

Now let us turn to the arithmetic with exponentiation. Let us recall that
we define the exponentiation function as exp(x, y) = xy. We show that con-
trary to the infinite model, in finite models exponentiation is a rather weak
function. It is known that in the infinite model sole exponentiation defines
addition and multiplication. Here, we show that in finite models exponenti-
ation can be defined by means of multiplication only. The following theorem
was proven by Krynicki and Zdanowski in [25].

97

Theorem 6.27 ([25]) Let A = (ω, exp) and B = (ω,×). FM(A) is defin-
able in FM(B).

Proof. A full interpretation of FM(A) in FM(B) is a sequence of formulas
(ϕU(x), ϕexp(x, y, z), ϕMAX(x)). Since the interpretation is full we have to
take for ϕU the formula x = x, and as ϕMAX we take x = MAX. What is
left is to write the formula ϕexp(x, y, z). Firstly, let us observe that there is
a formula ϕe(x, y, z) with multiplication only which defines exponentiation
on {0, . . . ,

⌊√
n− 1

⌋
} part of a model Bn. The existence of such a formula

follows from the fact that there is a ∆0 definition of exponentiation in the
arithmetic of addition and multiplication (see lemma 3.4) and that any such
definition can be rewritten in finite models (see theorem 3.21). We use in
ϕe only multiplication because on {0, . . . ,

⌊√
n− 1

⌋
} part of a model for

multiplication we can define addition (see theorem 6.22). Moreover, it can
be easily checked that one can define exponentiation in Bn, for n ≤ 10.
Therefore, we assume that the maximal element in Bn (which is just n) is
greater than 10. We need the following property:

for each n ≥ 10 and a such that a2 ≥ n and b ≥ 2,

ba ≥ n.

Thus, we should care mainly about elements a for which a2 is less than the
maximal element of a model.

We write the formula ϕexp as a disjunction of two formulas: ϕ1(x, y, z)
and ϕ2(x, y, z). The first one detects and handles all easy cases and the
second handles the only nontrivial one. We use a formula ϕ+(x, y, z) which
defines addition on {0, . . . ,

⌊√
n− 1

⌋
} part of the model Bn. Moreover, we

freely use constants 0, 1 and 2 to denote first elements of the model Bn since
they can be defined by means of multiplication.
ϕ1(x, y, z) :=

(y = 0 ∧ z = 1) ∨ (x = 1 ∧ z = 1) ∨ (x = 0 ∧ y 6= 0 ∧ z = 0)∨

(yy = MAX ∧ x 6= 0 ∧ x 6= 1 ∧ z = MAX),

ϕ2(x, y, z) :=

yy 6= MAX ∧ y 6= 0 ∧ y 6= 1 ∧ x 6= 0 ∧ x 6= 1∧

∃w1∃w2{ϕ+(2w1, w2, y) ∧ (w2 = 0 ∨ w2 = 1)∧
[∃u(u2 6= MAX ∧ ϕe(x, w1, u) ∧ ((w2 = 0 ∧ z = uu) ∨ (w2 = 1 ∧ z = uux)))∨

(¬∃u(u2 6= MAX ∧ ϕe(x, w1, u)) ∧ z = MAX)]}.

98

The first line of ϕ2(x, y, z) simply states that none of the easy cases holds.
Then we find w1, w2 such that y = 2w1 + w2 and w2 ∈ {0, 1}. It is possible
because y is in the part of the model on which ϕ+(x, y, z) defines addition.
Then in the third line of ϕ2, we find u ≤

⌊√
n− 1

⌋
such that xw1 = u. It

follows that
xy = x2w1xw2 = (xw1)2xw2 = u2xw2 .

On the other hand, if such a u does not exist then xw1 >
⌊√

n− 1
⌋

and

xy ≥ x2w1 ≥ (xw1)2 ≥ (
⌊√

n− 1
⌋

+ 1)2 ≥ n

Thus z should be equal to the maximal element of the model. From the above
analysis it follows that the disjunction of ϕ1 and ϕ2 defines exponentiation
on the whole model from FM(A). �

Since FM((ω,≤)) is not definable in FM((ω,×)) we obtain the following.

Corollary 6.28 FM((ω,≤)) is not definable in
FM((ω, exp)).

Nevertheless, it is possible to give an IS–interpretation of FM((ω,+,×))
in FM((ω, exp)).

Theorem 6.29 ([25]) Let A = (ω, exp). FM(N) is IS–interpretable in
FM(A).

Proof. In the interpretation we use the common definition of multiplication
from exponentiation: for all x, y, z,

xy = z ⇐⇒ exp(exp(2, x), y) = exp(2, z).

It suffices now to observe that 2 is definable in all models FM(A) of cardi-
nality greater than 5 by the following formula:

exp(x, x) 6= x ∧ exp(exp(x, x), exp(x, x)) 6= exp(x, x)∧

∀z((exp(z, x) 6= z ∧ z 6= x) ⇒ ∃y(exp(x, y) 6= MAX ∧ exp(z, y) = MAX)).

In the first line of the above formula we exlude the case of x being 0 or 1. In
the second line we state that for any z 6∈ {0, 1, x} z can be proven to be less
than x by a witness y.

Thus, a formula exp(exp(2, x), y) = exp(2, z) defines multiplication when-
ever z is less than logarithm of the maximal element of a model. Now the

99

exact forms of formulas in the interpretation can be written in a straightfor-
ward manner. �

The last theorem allows us to characterize the complexity of exponen-
tiation in finite models. By proposition 6.12 we infer the existence of an
order preserving sl–interpretation of FM(N) in FM((ω, exp)). Thus, by the-
orems 6.10 and 6.30, we have the following theorem proven by Krynicki and
Zdanowski in [25].

Theorem 6.30 ([25]) 1. Th((ω, exp)) is Π1–complete.

2. sl(FM((ω, exp))) is Σ2–complete.

Then, by theorems 6.11 and 6.24, we can state the following.

Theorem 6.31 ([25]) The same relations are FM-representable in FM((ω, exp))
as in FM((ω,+,×)).

Let us mention that the definability of exponentiation in FM((ω,×)) can
be seen as an example of the weakness of fast growing functions in finite
models. It can also be shown that e.g. the facultet function or super ex-
ponential function are definable in FM((ω,×)). Both these functions grow
so fast that for only small fractions of elements of a given finite model their
value is not greater than the maximal element of the model. Thus, they are
easily definable provided that we defined them on small elements of a model.

6.3.3 Coprimality in finite models

In this subsection we shortly discuss the results obtained by M. Mostowski
and the author in [34]. We present them with the aim to complete the
landscape of finite artihmetics.

Coprimality in the infinite model is one of the weakest natural arithmeti-
cal relations. We denote it with ⊥. As we will see coprimality is surprisingly
strong when considered in finite models. The results below were proven in-
dependently by the author and by Marcin Mostowski and are presented in
[34].

We know that FM(N) is IS–interpretable in FM((ω,×)) or even in a
semantically weaker class of finite models FM((ω, exp)), see theorems 6.22
and 6.29 respectively. After these results were proven, M. Mostowski and
A. Wasilewska have shown that FM(N) is IS–intepretable in FM((ω, |)),
where | is the divisibility relation (see [33]). The above results raise the

100

question: are there any relations essentially weaker than divisibility allowing
an interpretation of FM(N) in their FM–domains? The answer is yes.

By means of coprimality relation we can not distinguish numbers which
have the same set of prime divisors like e.g. 6 and 12. This is so because for
each model A ∈ FM((ω,⊥)) such that 6, 12 ∈ |A|, there is an automorphism
f of A such that

f(x) =





12, if x = 6,

6, if x = 12,

x, if x ∈ |A| \ {6, 12} .

Nevertheless, even such a weak relation as coprimality can interpret in finite
models the full arithmetic.

In our interpretation of FM(N) in FM((ω,⊥)) we define the arithmetic
on indices of prime numbers. More precisely, we define the arithmetic on
≈–equivalence classes of the corresponding numbers. Let {pi : i ∈ ω} be an
enumeration of primes, that is p0 = 2, p1 = 3, . . . Let us define relations R+

and R× by the following:

R+([pi], [pk], [pm]) if and only if i+ k = m,

R×([pi], [pk], [pm]) if and only if ik = m.

The following theorem has been proven by M. Mostowski and Zdanowski
in [34].

Theorem 6.32 ([34]) There is an sl–interpretation ϕ̄ of FM(N) in
FM((ω,⊥)). The interpretation defines R+ and R× on the primes from an
initial segment of a given model of FM((ω,⊥)).

Moreover, the equality predicate is not used in formulas from ϕ̄.

The proof of the above theorem uses essentially an estimation of the
density of primes given by the prime number theorem.

As a corollary we obtain a characterization of relations which are FM–
representable in FM((ω,⊥)) given by M. Mostowski and Zdanowski in [34].

Definition 6.33 Let a ≈ b if a and b have the same prime divisors. A
relation R ⊆ ωn is coprimality invariant if ≈ is a congruence relation for R.

Theorem 6.34 (FM–representability theorem for FM((ω,⊥))) Let
R ⊆ ωn. R is FM–representable in FM((ω,⊥)) if and only if R is FM–
representable in FM(N) and R is coprimality invariant.

101

The interpretation gives also the following theorem. Its first point can be
seen as a variant of the Trachtebrot theorem for FM((ω,⊥)) family of finite
models.

Theorem 6.35 ([34]) 1. Th(FM((ω,⊥))) is Π1–complete,
2. sl(FM((ω,⊥))) is Σ2–complete.

Moreover, the theorem remains valid even if we do not have equality in
the language.

The methods used in [34] allows also to characterize the complexity of
the coprimality relation with some parts of ordering in the infinite model.

Let
P2 = {pipj : 0 ≤ i < j} ∪ P,

for P being the set of primes.

Theorem 6.36 ([34]) The relations R+ and R× are definable in
(ω,⊥,≤P2).

Let us observe that it was proven by Maurin in [28] that the theory of
(ω,×,≤P) is decidable. On the other hand, Bés and Richard proved in [4]
that one can intepret the arithmetic of addition and multiplication in the
model (ω,⊥,≤P 2), where P 2 = P ∪ {p2 : p ∈ P}. In the view of this result
the last theorem shows that another small extension of the structure (ω,⊥)
by the ordering ≤P2 again gives an arithmetic so strong that it interprets
addition and multiplication.

6.4 Decidable fragments of multiplication with

order

The results presented in this section were achieved in cooperation with Micha l
Krynicki and are contained in our paper [25].

Let us fix A as the model (ω,×,≤). The main result of this section is
the decidability of the existential fragment of multiplication with ordering in
FM(A) as well as in A. We also prove that sl∃∗(FM(A)) is decidable (see
theorem 6.42). Morever, the proofs reveal some additional information on a
size of the finite models for ∃∗ sentences.

Let us observe, that if we replaced ordering by the successor the corre-
sponding theory becomes undecidable.

Fact 6.37 Th∃∗(FM((ω,×, S))) is Π1–complete and sl∃∗(FM((ω,×, S))) is
Π1–hard.

102

Proof. Analyzing the proof of theorem 6.26 one can see that if we replace
the formula ϕS(x, y) which defines the successor function with S(x) = y we
get ∃∗ formulas. Since we have the successor function in our vocabulary we
get the result as in theorem 6.26 but for ∃∗ formulas. �

We need the following fact from Krynicki and Zdanowski [25].

Fact 6.38 ([25]) For any ∃∗ sentence ϕ, if ϕ is satisfiable in FM(A) then
FM(A) |=sl ϕ.

Proof. It suffices to show that for each k there is N such that for each
n ≥ N there is a submodel of An which is isomorphic to Ak. Therefore, if ϕ
is ∃∗ and Ak |= ϕ then each model of cardinality greater or equal to N has a
submodel in which ϕ is true. But for any ∃∗ formula ψ and B ⊆ A, if B |= ψ
then A |= ψ. Thus, ϕ has to be true also in An and, consequently, |=sl ϕ.

Let a model Ak be given. It has the universe {0, 1, . . . , k}. We define a
function :̂ |Ak| −→ |An| and then we prove that if n is sufficiently large,
the image of ˆ defines a submodel of An isomorphic to Ak.

Let p1, . . . , pm be all primes < k. For i ≤ m let

p̂i =
⌈
nlogk pi

⌉
.

Each element a ∈ {2, . . . , k − 1} has a unique representation of the form
pr11 · · ·prmm . To preserve multiplication we define â as p̂r11 · · · p̂rmm .

Of course we put: 0̂ = 0, 1̂ = 1 and k̂ = n.
To prove that for a sufficiently large n the image of ˆ defines a submodel

of An isomorphic to Ak it suffices to prove that for a sufficiently large n all
r1, . . . , rm < k and all a, b ∈ {2, . . . , k − 1},

1. pr11 · · · prmm < k ⇐⇒ p̂r11 · · · p̂rmm < n,

2. a < b ⇐⇒ â < b̂.

Clearly, if all requirements of the form 1 and 2 are satisfied then ˆ is an
injection of Ak into An.

We will show only that for a, b ∈ {2, . . . , k − 1} and for a sufficiently
large n, the condition from point 2 is satisfied. The point 1 is proven in an
analogous way.

103

Assume a = pr11 · · · prmm , b = ps11 · · · psm
m and a < b. Then

â = p̂r11 · · · p̂rmm
=

⌈
nlogk p1

⌉r1 · · ·
⌈
nlogk pm

⌉rm
< (nlogk p1 + 1)r1 · · · (nlogk pm + 1)rm

≤ (nlogk p1+ε
′

)r1 · · · (nlogk pm+ε′)rm

≤ (nlogk (p1+ε))r1 · · · (nlogk (pm+ε))rm , and for sufficiently large n,
ε′ and ε may be chosen arbitrarily small,

≤ nlogk ((p1+ε)r1 ···(pm+ε)rm)

< nlogk (p
s1
1 ···psm

m), for sufficiently small ε,
= (nlogk p1)s1 · · · (nlogk pm)sm

≤ p̂s11 · · · p̂sm
m

= b̂.

By the same argument, if a > b then â > b̂. Of course if a = b then â = b̂.
This finishes the proof of the equivalence from condition 2.

For each requirement of the form 1 and 2 we can choose N such that for
each n ≥ N this requirement is satisfied in An. To end the proof let us ob-
serve that there is a finite number of such requirements to satisfy. Therefore,
if we choose N such that in all models of cardinalities greater than such N
the image of ˆ defines a submodel isomorphic to Ak. �

As an immediate corollary we obtain

Corollary 6.39 ([25]) Let ϕ be a ∃∗ sentence.

ϕ is satisfiable in FM(A) if and only if FM(A) |=sl ϕ.

Let us recall that the rank of a term t, rk(t) is the number of occurrences
of function symbols in t. We call a term t simple if rk(t) ≤ 1. A formula ψ is
simple if all terms in ψ are simple. Of course, each ∃∗ formula is effectively
equivalent to a simple ∃∗ formula.

We estimate below the size of a model from FM(A) in which a given ∃∗

sentence in a relational form is satisfied, provided that it is satisfied in FM(A)
at all. This result, combined with corollary 6.39, gives the decidability of
sl∃∗(FM(A)).

Before stating the next lemma we introduce three functions which are
needed to express the lemma and we list their properties which are used
during the proof.

For all n, k ∈ ω,
G(n) = exp(2, 2n2

2
3
(4n−1)),

g(n, k) = exp(2, 2
2
3
(4n−k(4k−1))),

h(n, k) = exp(2, 22(n−k)).

104

It is easy to observe that

g(n, k) = exp(2,

i=k∏

i=1

2(h(n, i))2)

and
G(n) = g(n, n).

During the proof of the next lemma we use the following inequalities
which hold between h and g:

σ1 : 2(h(n, k + 1))2 ≤ h(n, k),

σ2 : g(n, k + 1) ≥ (g(n, k))h(n,k+1),

σ3 : g(n, k + 1) ≥ (g(n, k))h(n,k+1)+1,

σ4 : g(n, k + 1) ≥ (g(n, k))2(h(n,k+1))2 .

They can be verified by an easy calculation. Each time we use one of σi’s in
the proof of the next lemma we mention it by indicating a proper condition.

Lemma 6.40 ([25]) Let P2 be the set of powers of 2. For all a1, . . . , an with
1 < a1 < . . . < an there exist b1, . . . , bn ∈ P2 ∩{2, . . . , G(n)} such that for all
i, j,m, l ≤ n

aiaj < amal ⇐⇒ bibj < bmbl.

Proof.
We prove by induction on k ≤ n the following:

∀k ≤ n∃b1, . . . , bk ∈ P2 ∩ {2, . . . , g(n, k)}∀t1(x1, . . . , xk), t2(x1, . . . , xk)

{∧i∈{1,2} rk(ti) ≤ h(n, k) ⇒

[t1(a1, . . . , ak) < t2(a1, . . . , ak) ⇐⇒ t1(b1, . . . , bk) < t2(b1, . . . , bk)]}.

For k = n we obtain the thesis.
We consider the following formula:

∀t1(x1, . . . , xk), t2(x1, . . . , xk){
∧

i∈{1,2}

rk(ti) ≤ h(n, k) ⇒ (*)

[t1(a1, . . . , ak) < t2(a1, . . . , ak) ⇐⇒ t1(b1, . . . , bk) < t2(b1, . . . , bk)]}.

105

We show that for each k ≤ n one can find a sequence b1, . . . , bk ≤ g(n, k)
which satisfy (*). Let us observe that if b1, . . . , bk satisfy (*) then, for each
m ≥ 1, the sequence bm1 , . . . , b

m
k also satisfies (*).

For k = 1 we put b1 = 2. Now let us assume that there exist b1, . . . , bk ≤
g(n, k) which satisfy (*) for k < n and we find proper c1, . . . , ck+1, possibly
with ci 6= bi for i ≤ k. We consider two cases.

For the first, let us assume that there exist w ≥ 1 and t(x1, . . . , xk),
t′(x1, . . . , xk) such that rk(t) + w, rk(t′) ≤ h(n, k + 1) and

t(a1, . . . , ak)a
w
k+1 = t′(a1, . . . , ak). (**)

Then the new sequence c1, . . . , ck+1 must satisfy the equation

t(c1, . . . , ck)c
w
k+1 = t′(c1, . . . , ck).

Let r be such that

2r =
t′(b1, . . . , bk)

t(b1, . . . , bk)
.

If w|r we set ci = bi for i ≤ k and set ck+1 to 2
r
w . If w 6 |r then, for i ≤ k, we

take ci = bwi and as ck+1 we put 2r. Observe that in both cases ci ≤ g(n, k+1)
for i ≤ k+1 (by σ2), the sequence c1, . . . , ck satisfies (*) and cwi+1 = t′(c̄)/t(c̄).
Now we argue that our choice of c1, . . . , ck+1 is suitable.

Since h(n, k) is decreasing in k it suffices to show that if s(x1, . . . , xk),
s′(x1, . . . , xk) and u are such that rk(s) + u ≤ h(n, k + 1) and rk(s′) ≤
h(n, k + 1) then

s(a1, . . . , ak)a
u
k+1 < s′(a1, . . . , ak) ⇐⇒ s(c1, . . . , ck)c

u
k+1 < s′(c1, . . . , ck)

and

s′(a1, . . . , ak) < s(a1, . . . , ak)a
u
k+1 ⇐⇒ s′(c1, . . . , ck) < s(c1, . . . , ck)c

u
k+1.

We show only the first equivalence. Let

s(a1, . . . , ak)a
u
k+1 < s′(a1, . . . , ak).

Then
(s(a1, . . . , ak))

wauwk+1 < (s′(a1, . . . , ak))
w

and, by (**),

(s(a1, . . . , ak))
w(t′(a1, . . . , ak))

u < (s′(a1, . . . , ak))
w(t(a1, . . . , ak))

u.

106

We need the fact that rk(swt′u), rk(s′wtu) ≤ h(n, k). Indeed,

rk(swt′u) ≤ rk(s)w + (w − 1) + 1 + rk(t′)(h(n, k + 1) − rk(s))+

+ (h(n, k + 1) − rk(s) − 1)

≤ rk(s)h(n, k + 1) + h(n, k + 1)+

+ h(n, k + 1)(h(n, k + 1) − rk(s))+

+ (h(n, k + 1) − rk(s) − 1)

≤ h(n, k + 1)h(n, k + 1) + h(n, k + 1) + h(n, k + 1)

≤ (h(n, k + 1))2 + 2h(n, k + 1)

≤ 2(h(n, k + 1))2

≤ h(n, k).

The last inequality is simply the condition (σ1). The reasoning for rk(s′wtu) ≤
h(n, k) is perfectly parallel. Thus, by (*) applied to c1, . . . , ck we have,

(s(c1, . . . , ck))
w(t′(c1, . . . , ck))

u < (s′(c1, . . . , ck))
w(t(c1, . . . , ck))

u

and, since cwk+1 = t′(c̄)/t(c̄),

(s(c1, . . . , ck))
wcuwk+1 < (s′(c1, . . . , ck))

w.

We finally obtain that

s(c1, . . . , ck)c
u
k+1 < s′(c1, . . . , ck).

For the converse implication let us observe that we can reverse all steps
in the above reasoning. The second equivalence is proven similarly.

Now let us assume that there are no w ≥ 1, t(x1, . . . , xk), t
′(x1, . . . , xk)

such that rk(t)+w, rk(t′) ≤ h(n, k+1) and t(a1, . . . , ak)a
w
k+1 = t′(a1, . . . , ak).

Then let (t1, t
′
1, w1), . . . , (tm, t

′
m, wm) be the list of all triples such that rk(ti)+

wi ≤ h(n, k + 1), rk(t′i) ≤ h(n, k + 1), wi ≥ 1 and

ti(a1, . . . , ak)a
wi
k+1 < t′i(a1, . . . , ak)

and let (s1, s
′
1, u1), . . . , (sr, s

′
r, ur) be the list of all triples such that rk(sj) ≤

h(n, k + 1), rk(s′j) + uj ≤ h(n, k + 1), uj ≥ 1 and

sj(a1, . . . , ak) < s′j(a1, . . . , ak)a
uj

k+1.

We should define c1, . . . , ck+1 in a way that preserves all of the above inequal-
ities.

107

If the first list is empty, we define ck+1 as b
h(n,k+1)+1
k and, for i ≤ k, ci = bi.

By σ3 the new sequence satisfies (*). Otherwise, for i ≤ m, let us define νi
such that

2νi = t′i(b1, . . . , bk)/ti(b1, . . . , bk).

Next, for j ≥ r, we define µj such that if sj(b1, . . . , bk) ≥ s′j(b1, . . . , bk) then

2µj = sj(b1, . . . , bk)/s
′
j(b1, . . . , bk)

and µj = 0, otherwise.
For each i ≤ m, j ≤ r

(ti(a1, . . . , ak))
uj(sj(a1, . . . , ak))

wia
wiuj

k+1 < (t′i(a1, . . . , ak))
uj(s′j(a1, . . . , ak))

wia
wiuj

k+1

and therefore

(ti(a1, . . . , ak))
uj(sj(a1, . . . , ak))

wi < (t′i(a1, . . . , ak))
uj(s′j(a1, . . . , ak))

wi.

Again, rk(t
uj

i s
wi
j) ≤ h(n, k) and rk(t′

uj

i s
′wi
j) ≤ h(n, k) so, by the inductive

assumption, we obtain that

(ti(b1, . . . , bk))
uj(sj(b1, . . . , bk))

wi < (t′i(b1, . . . , bk))
uj(s′j(b1, . . . , bk))

wi

and (
sj(b1, . . . , bk)

s′j(b1, . . . , bk)

)wi

<

(
t′i(b1, . . . , bk)

ti(b1, . . . , bk)

)uj

.

Thus,
(2µj)wi < (2νi)uj

and

2
µj
uj < 2

νi
wi .

Finally, we obtain that for each i ≤ m, j ≤ r

µj
uj

<
νi
wi
.

We may assume that µ1

u1
is maximal of all the fractions

µj

uj
and ν1

w1
is

minimal of all the fractions νi

wi
. If µ1

u1
+ 1 < ν1

w1
then the sequence ci = bi for

i ≤ k and ck+1 = 2

l
µ1
u1

m
satisfy all relevant inequalities. However, that choice

of c1, . . . , ck+1 would be impossible if µ1

u1
+ 1 ≥ ν1

w1
. In this case let us define,

for i ≤ k, ci as b2w1u1
i . Now for the sequence c1, . . . , ck, we can define ν ′j and

µ′
i exactly in the same way as we did for b1, . . . , bk. So

2ν
′
i = t′i(c1, . . . , ck)/ti(c1, . . . , ck).

108

and
2µ

′
j = sj(c1, . . . , ck)/s

′
j(c1, . . . , ck).

Then µ′
j = 2µjw1u1 and ν ′i = 2νiw1u1. Since

µ′1
2u1
,
ν′1

2w1
are natural numbers

such that
µ′1
2u1

<
ν′1

2w1
, we have that

µ′1
u1

+ 1 <
ν′1
w1

. Thus, we can take ck+1

as 2
µ′
1

u1
+1

(here we use σ4). It is straightforward to check that the sequence
c1, . . . , ck+1 satisfies (*) for k + 1. �

Finally we obtain the estimation of the size of a model from FM((ω,×,≤))
for a purely existential formulas given by Krynicki and Zdanowski in [25].

Theorem 6.41 ([25]) Let F (n) = exp(2, 2n+12
2
3
(4n+1−1)) + 1 and let ϕ ∈

F{×,≤} be an ∃∗ sentence in a relational like form with all variables among
x1, . . . , xn. If ϕ is satisfiable in FM((ω,×,≤)) then it has a model in
FM((ω,×,≤)) of cardinality not greater than F (n).

Proof. Let us observe that F (n) = G(n + 1) + 1, where G is a function
from lemma 6.40.

Let A = (ω,×,≤) and let a1, . . . , an be witnesses for ϕ in a model Aan+1 ∈
FM(A) such that Aan+1 |= ϕ. Then by lemma 6.40, we can find b1, . . . , bn+1

not greater than G(n+ 1) such that for all i, j ≤ n + 1,

ai < aj ⇐⇒ bi < bj

and, for all i, j, k, l ≤ n+ 1,

aiaj < akal ⇐⇒ bibj < bkbl.

Since ϕ is in a relational like form, Abn+1 |= ϕ and card(Abn+1) ≤ F (n). �

Theorem 6.42 ([25]) sl∃∗(FM((ω,×,≤))) is decidable.

Proof. By theorem 6.41 the satisfability problem for ∃∗ formulas is de-
cidable in FM((ω,×,≤)). But then corollary 6.39 states that satisfiabil-
ity in FM((ω,×,≤)) is equivalent to being true in almost all models from
FM((ω,×,≤)). �

109

6.5 Spectra of arithmetics in finite models

In this section we examine spectra of some arithmetics. Let us recall that by
an FM(A)–spectrum of a sentence ϕ, SpecFM(A)(ϕ), we define the set of the
cardinalities of the models in FM(A) in which ϕ is true and Spec(FM(A)) is
the set of all FM(A)–spectra, see definition 3.13.

It is not difficult to describe the spectrum of FM((ω,+)). Indeed, for
each sentence ϕ ∈ F{+} there is a formula ϕ∗(y) constructed in lemma 6.1
such that

Spec(ϕ) = {n+ 1 : (ω,+) |= ϕ∗[n]}.
This shows that there is a strict relation between elements of

Spec(FM((ω,+))) and the sets of natural numbers definable in (ω,+). The
theorem of Ginsburg and Spanier (for a proof see [45]) states that the sets
definable in the infinite model for arithmetic with addition are exactly the
ultimately periodic sets.3 In consequence, Spec(FM((ω,+))) is just the fam-
ily of ultimately periodic sets. Moreover, it follows from [42] that this is
also a spectrum of arithmetic with addition in the language with counting
quantifiers.

There is also a classical characterization of the spectrum for arithmetic
of addition and multiplication given by Wrathall in [54].

Theorem 6.43 ([54]) Spec(FM((ω,+,×))) is the family of sets in linear
time hierarchy.

In her paper [54] Wrathall proved the equivalence of linear time hierarchy
and the class of rudimentary sets. However, the latter can be easily shown
to be contained, and indeed equal, to Spec(FM((ω,+,×)).

FM((ω,+,×)) is IS–interpretable in FM((ω,×)) but, as we will see later,
Spec(FM((ω,×)) (Spec(FM((ω,+,×))). However, the spectrum of FM((ω,×))
is not computationally easier than the spectrum of FM((ω,+,×)).

Proposition 6.44 ([25]) Let X belong to the spectrum of arithmetic with
addition and multiplication. Then the set

{r : ∃n ∈ X((n− 1)2 + 1 ≤ r < n2 + 1)}

belongs to the spectrum of arithmetic with multiplication.

Proof. Let A = (ω,×) and N = (ω,+,×). Let ϕ̄ be the IS–interpretation
of FM(N) in FM(A) from theorem 6.22. Then, by the form of the function

3A set X ⊆ ω is ultimately periodic if there are a positive integer p and a natural
number a such that ∀n ≥ a(n ∈ X ⇐⇒ n + p ∈ X).

110

f from theorem 6.22 (f(n) =
⌊√

n− 1
⌋
), it follows that for any sentence

ψ ∈ F{+,×,MAX}, if X = SpecFM(B)(ψ) then

{r : ∃n ∈ X((n− 1)2 + 1 ≤ r < n2 + 1)} = SpecFM(A)(Îϕ̄(ψ)).

The last equality follows from the fact that, for each r ≥ 1,

r ∈ SpecFM(A)(Îϕ̄(ψ)) ⇐⇒ Ar−1 |= Îϕ̄(ψ)

⇐⇒ Bf(r−1) |= ψ

⇐⇒ f(r − 1) + 1 ∈ SpecFM(B)(ψ)

⇐⇒ ∃n ∈ SpecFM(B)(ψ) n = f(r − 1) + 1

⇐⇒ ∃n ∈ SpecFM(B)(ψ) n =
⌊√

r − 1
⌋

+ 1

⇐⇒ ∃n ∈ SpecFM(B)(ψ) (n ≤
√
r − 1 + 1 < n+ 1)

⇐⇒ ∃n ∈ SpecFM(B)(ψ) ((n− 1)2 ≤ r − 1 < n2

⇐⇒ ∃n ∈ SpecFM(B)(ψ) ((n− 1)2 + 1 ≤ r < n2 + 1.

�

The next proposition is a slightly improved version of proposition from
Krynicki and Zdanowski [25]. In that paper the proposition was given only
for the family FM((ω,×)).

Proposition 6.45 The set Par = {2n : n ∈ ω} does not belong to
Spec(FM((ω,×,≤P))), where ≤P is the ordering restricted to the set of primes.

Proof. Let A = (ω,×,≤P). We show that for any sentence ψ ∈ F{×,≤P ,MAX},
there are arbitrarily large finite models An,An+1 ∈ FM(A) such that

An |= ψ if and only if An+1 |= ψ. (*)

Let ψ be a sentence of quantifier rank k and let n be a prime such that
there are 2k+1 + 1 primes in {dn/2e , . . . , n− 1} (by fact 6.16 there are such
arbitrarily large primes). Then

An ≡k An+1.

The strategy for Eros to win the k–moves game on An and A′
n consists of

the following rules:

1. He maps maximal element of An to the maximal element of An+1.

111

2. He plays the set {dn/2e , . . . , n− 1}∩P in An and {dn/2e , . . . , n}∩P
in An+1 just like between two linear orderings.

3. On the remaining parts of both models he plays usining identity func-
tion.

�

It is also easy to observe that Spec(FM((ω,×))) ⊆ Spec(FM((ω,≤P)))
since P is not in the former spectrum.

Now we are going to separate Spec(FM((ω, exp))) from Spec(FM((ω,×))).

Fact 6.46 ([25]) The set {n2 + 1 : n ∈ ω} is in the spectrum of multiplica-
tion.

Proof. Let X = {n2 + 1 : n ∈ ω}. Then X is the spectrum of the following
sentence ϕ:

∃x(xx 6= MAX ∧ ∀z(zz 6= MAX ⇒ ϕ≤(z, x))∧

∃=2w(ww = MAX ∧ xw 6= MAX)).

In the first line of ϕ we state that x is the maximal element such that xx 6=
MAX. In the second line it is claimed that there are exactly two elements,
say w1, w2, greater than x such that xwi 6= MAX. Thus, w1 = x + 1 and
w2 = x+2. We obtain that x(x+2) < MAX and (x+1)2 ≥ MAX. Combining
the two equalities we obtain

x2 + 2x < MAX ≤ x2 + 2x+ 1.

It follows that

({0, . . . , n} ,×n) |= ϕ if and only if ∃k ≥ 1n = k2.

But then the cardinality of the model is exactly k2 + 1. �

Fact 6.47 {n2 + 1 : n ∈ ω} does not belong to the spectrum of arithmetic of
exponentiation.

Proof. Let B = (N, exp). By fact 6.46, to prove the thesis it suffices
to show that there is no sentence ϕ of arithmetic with exponentiation such
that for an arbitrary natural number n: An2−1 6|= ϕ and An2 |= ϕ. In-
deed, let p be a “sufficiently large” prime number. Then p2 − 1 behaves in

112

Bp2 in the same way as big prime numbers behave in models for multipli-
cation. For all x, y > 1, exp(x, y) 6= p2 − 1 and both: exp(x, p2 − 1) and
exp(p2 − 1, x) are greater than the maximal element of a model. Therefore,
for all x, y > 1, if exp(x, y) ≥ p2 − 1 then exp(x, y) ≥ p2. It follows that we
can play Ehrenfeucht–Fräısse game between Bp2−1 and Bp2 treating p2 − 1 in
Bp2 like any other prime number from the upper half of Bp2. �

As a corollary we obtain the following.

Corollary 6.48 ([25]) Spec(FM((ω, exp))) (Spec(FM((ω,×))).

We can sum up presented relations in the following diagram where a
path along the arrows indicates a proper inclusion and the lack of such a
path indicates incomparability.

Spec(FM((ω,+,×))) = LINH

Spec(FM((ω,×,≤P)))

OO

Spec(FM((ω,+)))

==||||||||||||||||||||||||||||||||||||||

Spec(FM((ω,×)))

OO

Spec(FM((ω,≤P)))

hhQQQQQQQQQQQQQQQQQQQQQQQQQQQ

Spec(FM((ω, exp)))

OO

Spec(FM((ω,≤))) = Fin ∪ coFin

OO

aaBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

Pictrure 6.1. Inclusions between spectra of finite arithmetics.

113

114

Appendix A

Describing computations in
finite models

In this appendix we present the proofs of theorems 4.1 and 4.4. We present
them here because their proofs are quite tedious while their technical de-
tails do not affect our work. Readers familiar with the results of chapter 3
should have no difficulties with understanding them or just proving them by
themselves.

As it was stated in sections 2.3 and 4.1 a Turing machine H is a tuple
(Q,Σ,Γ, δ, qS, qA), where Q = {q1, . . . , qn} is a set of states of H , qS = q1 is a
starting state, qA = q2 is an accepting state, Γ = {0, 1, α, β} and Σ = {0, 1}
are alphabets of the tape and of the machine, respectively, and δ : Q× Γ −→
Q× Σ × {L, S,R} is a partial function called the transition function of H .
We assume that the tape is unbounded to the right and that its leftmost
square contains the character α which cannot be erased.

Now we will fix a coding of H by a finite word in a 10–letter alpha-
bet {0, 1, α, β, s,#, $, L, S, R}. For each transition of H , there is a tuple
(a, qi, b, qj, c) ∈ Γ×Q\{qA}×Σ×Q×{L, S,R} such that δ(a, qi) = (b, qj , c);
we define its code as a word

#a#si#b#sj#c#.

Let e : {0, . . . , k} −→ Γ ×Q× Σ ×Q× {L, S,R} be a fixed enumeration of
all such codes for H . We can then describe H by a finite word of the form

$$$sn$$e(0)$. . . $e(k)$$$.

Let the word written on the tape by H during a computation of H be
u = u1, . . . , ur, with u1 = α, ui ∈ Σ for 1 < i < r and ur ∈ Γ,1 Then by a

1Only the last letter of u can be outside Σ since a machine can read the blank symbol

115

word
u1 . . . uk−1s

iuk . . . ur

we describe that the machine is in the state qi and reads the square containing
uk. E.g. an initial configuration of the machine H on the input w ∈ {0, 1}∗
is described by the word

αsw.

If C1, . . . , CN is a sequence of consecutive configurations during the com-
putation of H with C0 – a starting configuration and CN – a final configura-
tion then we describe the computation of H by a word

H##C0# . . .#CN .

Now we can restate and prove lemma 4.1 from subsection 4.1.1.

Lemma A.1 For each r there is an arithmetical formula Comp(x, y) such
that for each code of a Turing machine H and for each w̄ = w1, . . . , wr, c
and n ≥ c the following holds

c is a computation of H with an input w̄ ⇐⇒ Nn |= Comp[H, code(w̄), c],

where Nn ∈ FM(N) and code is the function which codes r-tuples (see an
example of such a coding on page 23). In other words if n ≥ c then we
can correctly represent the computation c in a finite model Nn. Moreover, if
n < c then, for each a ≤ n,

Nn 6|= Comp[H, code(w̄), a].

Similarly, there is a formula Accept(x, y) such that for each c and for
each code H of a Turing machine and for each n ≥ c,

c is an accepting computation of H ⇐⇒ Nn |= Accept[H, c].

Proof. Although the lemma concerns the structure N in the proof we use
the notions from arithmetic of words and we assume that the models are
equipped with the concatenation operation. We can do this by the results of
chapter 3 of the definability of concatenation in FM(N) (see theorem 3.27).

Let us recall the formula s $ t from page 47 with the following property.
For each n and a valuation ā in FW

t
n, for all terms t, s,

FW
t
n |= (s $ t)[ā] if and only if

β when it moves its head to the right. We assume also that u always contains an input
word.

116

FW
t |= (s = t)[ā] and values of t and s in FW

t are less or equal n.

Now we write several formulas which will be useful for us. The first one
expresses the fact that H is a code of a Turing machine (for its description
see below). Machine(H) :=

∃u ∈ {s}∗ ∃z {H $ $$$u$z$$∧

z $ $({#}×Γ×(Q\{ss})×{#}×Σ×{#}×Q×{#}×{L, S,R}×{#}×{$})∗∧
∀y ∈ {s}∗ (y ⊆ z ⇒ y ⊆ u)∧

∀t1 ∀t2 ∀w[$t1$ ⊆ z ∧ $t2$ ⊆ z ∧ $ 6⊆ t1 ∧ $ 6⊆ t2 ∧ t1wt2 ⊆ z ⇒
∀s1 ∀s2 ∀a1 ∀a2 (#a1#s1# � t1 ∧ #a2#s2# � t2 ⇒ a1 6= a2 ∨ s1 6= s2)]}.

The word u describes the number of states of the machine H and z is a word
coding the transitions of H . The correct form of z is forced in the third line.
The fourth line states that all states which appear in z are really states of H
and the last line states that there are no repetitions in the transition function
coded in z.

Then we write a formula which says that C is a word describing a tem-
porary description of a computation of a Turing machine. GoodConf(C) :=

∃u1 ∈ Σ∗ ∃u2 ∈ Σ∗ ∃w ∈ {s}∗ (C $ wαu1u2 ∨ C $ αu1wu2 ∨ C $ αu1u2wβ).

The disjunction in GoodConf(C) describes three possibilities which can
occur during a computation: either the head of a machine reads the first
symbol on the tape, α, or reads a symbol within the word written on the
tape, or reads the blank symbol on the first of previously unvisited squares.

The next formula, InitConf(w,C) expresses that C is an initial configu-
ration on the input w.

InitConf(w,C) := w ∈ Σ∗ ∧ C $ αsw.

The last auxiliary formula states that two given configurations C,D of
a machine H are the consecutive configurations of a computation of H .
Next(H,C,D) :=

GoodConf(C) ∧ GoodConf(D)∧

∃sC ∈ {s}∗ ∃sD ∈ {s}∗ (sC ⊆ C ∧ sCs 6⊆ C ∧ sD ⊆ D ∧ sDs 6⊆ D∧
∃a ∈ Γ ∃b ∈ Σ∃M ∈ {L, S,R} [sCa ⊆ C ∧ asCbsDM ⊆ H ∧ Ψ]),

where Ψ is a disjunction of the following two formulas:

∃w (C = sCαw ∧ ((M = S ∧D = sDαw) ∨ (M = R ∧D = αsDw))),

117

∃w1 ∃w2 ∃c1 ∈ Γ ∃c2 ∈ Γ {C = w1c1sCc2w2∧
((M = L ∧D = w1sDc1bw2) ∨ (M = S ∧D = w1c1sDbw2)∨

(M = R ∧ (w2 6= λ⇒ D = w1c1bsDw2) ∧ (w2 = λ⇒ D = w1c1bsDβ))]}.
In the second line of Next(C,D) we find the states sC and sD of H in the
configurations C and D, respectively. Then we find a character a which H
reads in the configuration C and a tuple (a, sC , b, sD,M) describing a proper
transition of H . The formula Ψ describes the relation between C and D
depending on the form of the transition and the position of the head of H .

Finally, we can write a formula Comp(H,w, c) which states that c is a
computation of H with the input w.

Machine(H) ∧ ∃z {c $ H#z ∧ ∃z′(z $ #z′#)∧

∃x∃y [z $ #x#y ∧ InitConf(H,w, x)]∧
∀x1∀x2[(#x1#x2# ⊆ z ∧

∧

i∈{1,2}

GoodConf(xi)) ⇒ Next(H, x1, x2)]∧

∃x∃y [z $ y#x#∧GoodConf(x)∧∀x′(GoodConf(H, x′) ⇒ ¬Next(H, x, x′))]}.
In the first line of Comp(H,w, c) we state that c begins with the code of
the Turing machine H followed by ##. Moreover, we find a subword z of c
which begins and ends with # and which is formed by removing from c a word
consisting of the code of the Turing machine H and one #. The word z should
have the form #c1# . . .#cj#, with # 6⊆ ci for i ≤ j, where the consecutive
c’s are the consecutive configurations of H during the computation. This is
stated in the third line of the formula. The second line forces c1 to be an
initial configuration of H and the fourth line establishes that cj is a final
configuration with no successor. All the above forces c to be the code of
a computation of H with the input w. Moreover, since all the quantifiers
in the above formulas could be bounded by c it follows that the formula
Comp(H,w, c) correctly states that c is a computation of H whenever c
appears in the finite model from FM(N).

It is relatively easy now to write a formula Accept(H, c) stating that c is
an accepting computation of H . It has the form

∃w ≤ c ∃d ≤ c{Comp(H,w, c) ∧ GoodConf(H, d) ∧ ∃z(c $ z#d#)∧

s11s ⊆ d}.
In the first line of the above formula we check that c is indeed a computation
of H and we state that d is the last configuration of c. Then in the last line
of Accept we check that H in this last configuration is in the accepting state

118

qA which, by definition, is equal to q2 and is coded by s11s. �

Now we present lemma 4.4 from subsection 4.1.2. Let us recall that a
family of relations {Rn}n∈ω, with Ri ⊆ {0, . . . , n}r, sl–approximates R ⊆ ωr

if for each m there is K such that whenever k ≥ K then Rk agrees with R
on the set {0, . . . , m}.

Lemma A.2 Let A be an oracle set and let {An}n∈ω be a family of finite
relations which sl–approximates A. Then for each r there is an arithmetical
formula OComp(x, y, P) such that for each Turing machine H? and for each
c and w̄ = w1, . . . , wr there is N such that for all n ≥ N the following holds

c is a HA–computation with an input w̄ ⇐⇒

(Nn, An) |= OComp[H?, code(w̄), c, P],

where (Nn, An) is the n–th model from FM(N) with an additional set An
interpreting P .

Moreover, there is the formula Accept(x, y) which expresses that y is an
accepting computation of x.

Proof. Since the proof of this lemma is very similar to the proof of lemma
A.1 we present only the description of necessary changes which should be
made in the previous proof to obtain the proof of the present lemma.

First of all, the transition function of the machine with an oracle is more
complex since it has to describe the moves of two heads. Then the notion
of configuration should be changed to include the context of the oracle tape
and the position on the second head.

The formulas Machine(H), GoodConf(C), InitConf(C) can be changed
quite easily to fit in this new context. The formula Next(H,C,D) should
be extended to handle also the oracle queries of H . That is, if w is a word
written on the oracle tape, H is in the query state q? in a configuration C
then the state sD at the configuration D is determined by the answer of the
oracle:

sD =

{
sYES if P (w),
sNO if ¬P (w),

where P is an additional predicate whose denotation approximates, in a given
finite model, an oracle set.

After such straightforward changes we obtain formulas which properly
describe the computations of a given machine H? with the oracle A.

Now for a given w̄, we should find N from the lemma. It suffices to ob-
serve that our formulas will correctly describe a computation c in a given

119

model (Nn, An) whenever c ≤ n and all oracle queries asked during the com-
putation c are correctly decided by An. Thus, we should take such N that
both conditions hold for all n ≥ N . �

120

Bibliography

[1] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity
within NC1. Journal of Computer and System Science, 41:274–306,
1990.

[2] J. L. Bell and A. B. Slomson. Models and ultraproducts. North Holland,
1971.

[3] J. H. Bennett. On Spectra. PhD thesis, Princeton University, 1962.

[4] W. Bés and D. Richard. Undecidable extensions of Skolem arithmetic.
Journal of Symbolic Logic, 63(2):379–401, 1998.

[5] J. R. Büchi. Weak second–order arithmetic and finite automata. Z.
Math. Logik Grundl. Math., 6:66–92, 1960.

[6] Patrick Cegielski. Théorie élémentaire de la multiplication des entiers
naturels. In Model Theory and Arithmetic, volume 890 of Lecture Notes
in Mathematics, pages 44–89, 1981.

[7] E. Dahlhaus. Reduction to NP–complete problems by interpretations.
In Rödding Börger and Hasenjaeger, editors, Logic and machines: deci-
sion problems and complexity, Lecture Notes in Computer Science 171,
pages 357–365. Springer–Verlag, 1984.

[8] A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties
of the finite ranks. Mathematical Logic Quarterly, 44:349–353, 1998.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer–Verlag,
1995.

[10] A. Ehrenfeucht. An application of games to completness problem for
formalized theories. Fundamenta Mathematicae, 49:129–141, 1961.

[11] R. Fagin. Generalized first order spectra and polynomial–time recogniz-
able sets. In SIAM – AMS Proceedings, volume 7, pages 43–73, 1974.

121

[12] M. Fitting. Notes on Incompletness and Undecidability. in manu-
script, 1999. available at http://comet.lehman.cuny.edu/fitting/

bookspapers/unpublished.html.

[13] R. Fräısse. Sur quelques classifications des systèmes de relations. Uni-
versité d’Alger, Publications Scientifiques, Serie A(1):35–182, 1954.

[14] K. Gödel. Über formal unentscheidbare Sätze der “Principia Mathema-
tica” und verwandter Systeme. Monatshefte für Mathematik und Physik,
38:173–198, 1931.

[15] P. Hájek and P. Pudlák. Metamathematics of First–Order Arithmetic.
Springer Verlag, 1993.

[16] K. Harrow. Sub–elementary classes of functions and relations. PhD
thesis, New York University, 1973.

[17] W. Hodges. Model theory. Encyclopedia of mathematics and its appli-
cations. Cambridge University Press, 1993.

[18] N. Immerman. Relational queries computable in polynomial time. In
14th ACM STOC Symposium, pages 147–152, 1982.

[19] N. Immerman. Languages which capture complexity classes. In 15th
ACM STOC Symposium, pages 347–354, 1983.

[20] N. Immerman. Descriptive Complexity. Springer Verlag, 1999.

[21] L. Ko lodziejczyk. A finite model-theoretical proof of a property of
bounded query classes within ph. The Journal of Symbolic Logic,
69:1105–1116, 2004.

[22] L. Ko lodziejczyk. Truth definitions in finite models. The Journal of
Symbolic Logic, 69:183–200, 2004.

[23] I. Korec. Definability of addition from multiplication and neighbour-
hood relation and some related results. In Proceedings of the conference
of analytic and elementary number theory, Vienna’96, pages 137–148.
Universät Wien, 1996.

[24] I. Korec. A list of arithmetical structures complete with respect to first–
order definability. Theoretical Computer Science, 257:115–151, 2001.

[25] M. Krynicki and K. Zdanowski. Theories of arithmetics in finite models.
Journal of Symbolic Logic, 70(1):1–28, 2005.

122

[26] T. Lee. Arithmetical definability over finite structures. Mathematical
Logic Quarterly, 49:385–393, 2003.

[27] J. A. Makowsky and Y. B. Pnueli. Computable quantifiers and log-
ics over finite structures. In M. Krynicki, M. Mostowski, and L. W.
Szczerba, editors, Quantifiers: Logics, Models and Computation, Vol-
ume I, pages 313–357. Kluwer Academic Publishers, 1995.

[28] F. Maurin. The theory of integer multiplication with order restricted
to prime numbers is decidable. Journal of Symbolic Logic, 62:123–130,
1997.

[29] A. Mostowski. On direct products of theories. Journal of Symbolic Logic,
17:1–31, 1952.

[30] A. Mostowski, R. M. Robinson, and A. Tarski. Undecidable theories.
North Holland, 1953.

[31] M. Mostowski. On representing concepts in finite models. Mathematical
Logic Quarterly, 47:513–523, 2001.

[32] M. Mostowski. On representing semantics in finite models. In
A. Rojszczak†, J. Cachro, and G. Kurczewski, editors, Philosophical
Dimensions of Logic and Science, pages 15–28. Kluwer Academic Pub-
lishers, 2003.

[33] M. Mostowski and A. Wasilewska. Arithmetic of divisibility in finite
models. Mathematical Logic Quarterly, 50(2):169–174, 2004.

[34] M. Mostowski and K. Zdanowski. Coprimality in finite models. 2005.
in manuscript.

[35] M. Mostowski and K. Zdanowski. FM–representability and beyond.
In B. Cooper, B. Loewe, and L. Torenvliet, editors, Proceedings of the
conference Computability in Europe, Lecture Notes in Computer Science.
Springer, 2005. in printing.

[36] J. Mycielski. Analysis without actual infinity. Journal of Symbolic Logic,
46:625–633, 1981.

[37] J. Mycielski. Locally finite theories. Journal of Symbolic Logic, 51:59–62,
1986.

[38] M. B. Nathanson. Elementary methods in number theory. Springer,
2000.

123

[39] M. Presburger. Über die volständigkeit eines gewissen system der arith-
metik ganzer zahlen, in welchem die addition als einzige operation her-
vortritt. In C. R. 1er congrès des Mathématiciens des pays slaves, Varso-
vie, pages 92–101, 1929.

[40] W. Quine. Concatenation as a basis for arithmetic. Journal of Symbolic
Logic, 11:105–114, 1946.

[41] J. Robinson. Definability and decision problems in arithmetic. Journal
of Symbolic Logic, 14:98–114, 1949.

[42] N. Schweikardt. On the Expressive Power of First-Order Logic with
Built-In Predicates. PhD thesis, Johannes Gutenberg-Universität Mainz,
2001.

[43] A. L. Semenov. Logical theories of one–place functions on the set of
natural numbers. Izv. Akad. Nauk. SSSR ser. Mat., 47:623–658, 1983.

[44] T. Skolem. Über gewisse satzfunktionen in der arithmetik. Skr. Norske
Videnskaps–Akademie i Oslo, 7:154–180, 1930.

[45] C. Smoryński. Logical number theory I. Springer, 1981.

[46] R. Smullyan. Theory of formal systems. Annals of Math. Stud. No. 47.
Princeton Univ. Press, 1961.

[47] R. I. Soare. Recursively enumerable sets and degrees. Perspectives in
Mathematical Logic. Springer, 1987.

[48] L. W. Szczerba. Interpretability of elementary theories. In Butts and
Hintikka, editors, Proceedings 15th ICALP 88, Logic, foundations of
mathematics and computability theory, pages 129–145. Reidel Publish-
ing, 1977.

[49] L. W. Szczerba. Interpretaions with parameters. Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, 26:35–39, 1980.

[50] W. Szmielew and A. Tarski. Mutual interpretability of some essentially
undecidable theories. In Proceedings of the international congress of
mathematicians, Cambridge Mass. 1950, page 734. American Mathe-
matical Society Providence, 1952.

[51] B. Trachtenbrot. The impossibility of an algorithm for the decision
problem for finite domains. Doklady Akademii Nauk SSSR, 70:569–572,
1950. in russian.

124

[52] M. Vardi. Complexity of relational query languages. In 14th symposium
on theory of computation, pages 137–146, 1982.

[53] A. Woods. Some problems in logic and number theory, and their con-
nections. PhD thesis, University of Manchester, 1981.

[54] C. Wrathall. Rudimentary predicates and relative computation. SIAM
Journal on Computing, 7:194–209, 1978.

125

Index

[a, b], 11
ar, 11, 13
~f(x̄), 11
Var, 11
Fσ, 11
Trmσ, 11
Q∗, 12
qr, 12
Free, 13
≡, 14
≡k, 14, 23
ϕA,ā,x̄, 14
Th, 14
A”≈, 16
∼k, 17
Iϕ̄, 19

Îϕ̄, 20
L(H), 22
WH , 22
RE, 22
≤m, 23
N , 30
BIT, 31
BITSUM, 31
EXP, 31
HF, 32
FW

t, 33
FM(A), 35
MAX, 35
Spec, 37
BITt, 44
lh, 48
≺, 50

�, 50
⊆, 50
a∗i , 50
Interval, 51
Letter, 51
Comp, 64
Accept, 64
OComp, 65
sl–aproximation, 65
sl(K), 66
|=sl, 66
Cn, 67
FM–representability, 67
fip, 71
Πi∈ωAi”U , 72
WFM, 77
µ(ϕ,FM(A)), 81
SR(FM(A)), 81
WSR(FM(A)), 81
sl–intepretability, 87
IS–interpretability, 88
⊥, 100

arity function, 11, 13

cartesian closed, 40
complete relation, 24
computation, 63

code, 64
congruence, 15
coprimality invariant, 101

Ehrenfeucht–Fräısse games, 16
winning strategy, 17

126

embedding, 15

filter, 72
finite intersection property, 71
formula, 11

∆0, 30
Πn, 30
Σn, 30
atomic, 11
determined, 68
in relation like form, 13
inductive construction, 12
quantifier free, 12
subformula, 12

good family of models, 66

interpretation, 18, 19
n–cartesian, 20
IS–interepretation, 88
sl–interpretion, 87
entire, 20
exact, 20
full, 41
order preserving, 41
parameter free, 20
simple, 20

isomorphism, 15
parital, 15

many-one reducibility, 23
model, 13

recursive, 69

oracle Turing machine, 24

pairing function, 73

quantifier
bounded, 30

quantifier rank, 12

recursive

model, 69
recursive function, 23
relation

∆0, 31
Πn, 31
Σn, 31
complete, 24
congruence, 15
decidable, 22
recursively enumerable, 22

sentence, 13
spectrum, 37
statistical representability, 81

weak, 81
subformula, 12
submodel, 13
symbol dla spelnia, 14
symbol dla uniwersum, 13

term, 11
simple, 11

translation function, 20
Turing machine, 22

ultrafilter, 72
ultraproduct, 72

valuation, 13
variable

bounded, 12
free, 13

vocabulary, 11

weak FM–representability, 77
winning strategy, 17
word, 22

127

