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Abstract

The paper presents the current state of knowledge in the field of logical investi-
gations of finite arithmetics. This is an attempt to summarize the ideas and results
in this area. Some new results are presented — this are mainly genralizations of
the earlier results related to properties of sl-theories and some nontrivial cases of
FM-representability theorem.
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1 Introduction

Finite arithmetics were object of interest for deep practical reasons for many years in
computer science and cryptography. In electronic computer technology we use essentially
finite approximations of the set of natural numbers. In C terminology long unsigned
numbers take 4 bytes of memory. It means that they can be represented in binary notation
as numerals with 32 binary digits, from 0 to 232 — 1. For some purposes we use bigger
natural numers representations by representing them as arrays of integers. In this way
we obtain essentially larger numbers, but still only finitely many of them. Elaborating of
algorithms for such restricted natural numbers we have to take into account that they are
bound — oppositely to unbouded natural numbers in mathematics.!

Cryptographic algorithms are usually designed for carrying them out on electronic
computers. They are based on representations of texts as natural numbers. Then by
application of some suitable algorithm these numbers are represented by other numbers
called encrypted messages. No wonder that such algorithms apply bounded natural num-
bers. However, independently of their implementations, these algorithms substantially
apply natural numbers of bounded size. We can guess that future discoveries will not
change this situation.

Our approch to finite arithmetics is from logical point of view. It is worth of noticing
that practically all papers openly treating this subject as their main topic were published
in XXI century. There are many results related to finite arithmetics in papers published
earlier. Nevertheless no one of them was addressed to this area. Hoare in [Hoa69] considers
some possible methods of proving properties of programs. He stresses there imortance of
finite arithmetic approach. This paper has a lot of descendants, but no one of them takes
into account of finite approach.

Our approach emanated from finite model theory. This is not accidental, because the
main earlier results in this area were published in papers devoted to finite model theory.

IThe term finite arithmetics is also used to computer representations of calculations on real numbers.
We do not go in this direction. Nevertheless, it is worth to notice that some authors consider this case
of finiteness as based on finteness of natural numbers, see [Myc81].



Moreover finite arithmetics as treated logically are essentially a subarea of finite model
theory.

We discuss in this paper the basic ideas motivating some crucial concepts of our
approach. These are mainly considerations related to an approach of transferring the
tarskian method of truth definitions to finite case. The idea of FM truth definitions
(from [Mos01]) motivated such notions as truth in sufficiently large finite models and
FM-representability.

We give a survey of the results and methods related to logical approach to finite arith-
metics. Obviously this reflects our mathematical and philosophical ideas. Nevertheless
the problems considered seems to be of general significance.

We tried to make the paper self-contained — at least in the concepual sense — by
explaining on the intuitive level everything what is not presented with all technical details.
For all the main theorems we tries to supply at least sketchy proofs or some intuitive
arguments. Of course in all these cases detailed proofs are given in the references.

2 Basic notions
Let A be a model having as a universe the set of natural numbers, i.e.
A: (N,Rl,...,Rs,fl,...,ft,al,...,aT),

where Rq,..., Ry are relations on N, f1, ..., f; are operations on N and a;,...,a, € N. We
will consider finite initial fragments of these models. Namely, for every positive n € N,
by A, we denote the following structure

A, =({0,...,n—=1} Ry, ..., R f1 . flhat, ..o ar,n— 1),

)y r

where R} is the restriction of R; to the set {0,...,n — 1}, f" is defined as

n . fl(b177bnz) lff(bl,,bnl> <n-—1

and a? = a; if a; < n, otherwise a = n — 1. We will denote the family {A,,1}nen by
FM(A).

The signature of A, is an extension of the signature of A by one constant. This
constant will be denoted by MAX.

Let ¢(x1,...,2,) be a formula and by,...,b, € N. We say that ¢ is satisfied by
bi,...,b, in all finite models of FM(A), what is denoted by FM (A) = ¢[b, ..., by, if for
all n > max(by,...,b,) A, = ¢[b,...,b,]. We say that ¢ is satisfied by by,...,b, in all
sufficiently large finite models of FM(A), what is denoted by FM(A) [=q ¢[b1, ..., by, if
there is k € N such that for all n > k A,, = ¢[by,...,b,).
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When no ambiguity arises we will use =g @b, ..., b,] instead of FM =g ¢[b, ..., by

Finally, a sentence ¢ is true in all finite models of FM(A) if A, | ¢ for all n € N,
Similarly, a sentence ¢ is true in all sufficiently large finite models of FM(A) if there is
k € N such that for all n > k, A, | ¢. By sl(FM(A)) we denote the set of sentences
true in all sufficiently large finite models of FM (A). So, we have

sSUFM(A)) ={p € F :3kVn >k A, E ¢}.

A most typical structures strictly related to the arithmetic are standard models for
arithmetic of addition, multiplication and the so called full arithmetic, i.e. structures
(N, +), (N, x), (N, +, x), respectively. The last structure will be denoted by N'. However,
from the computer science point of view some other arithmetical structures are important.
These are the following:

e (N,BIT), where the relation BIT is defined as follows: BIT(z,y) if and only if the
z-th bit in the binary representation of y is one. Thus, if y = %%°,a,2°, where
a; € {0,1}, then

BIT(z,y) if and only if a, = 1.

The structure (N, BIT) is isomorphic to the domain of the hereditarily finite sets
HF = (V,,, €), where V,, = .y Vi, where Vy = () and, for i € N, Vi, = P(V;) — the
powerset of V.

o FW' = ('}, %, ay,...,a;), where '} is the set of all words over I'; = {ay, ..., a;}, i.e.
the set of finite sequence of elements from I, *; is the concatenation operation on
words from I'} and a; is a word consisting of one character a;.

Finite words in the universe of FW’ can be identified with natural numbers via ¢
adic representation. The correspondence between finite words and natural numbers is
established by a function n;: I'y — w, where ny(\) = 0, n(a;) =1, for 1 < i < ¢, and
ne(Up, - .. ug) = Li=Zpng(u;)t', for u; € Ty

Thus we simply ordered all finite words in such a way that shorter words always occur
earlier and words of the same lenght are ordered lexicographicaly.

Also, it is not hard to prove that HF is isomorphic to (N, BIT). The claimed iso-
morphism function can be defined by induction on i for the family {V;};,en. The func-
tion fo: Vo — N is just the empty function and if we defined f;: V; — N then
fir1: Visn — N can be defined for y € Viyy as fiy1(y) = S, 271@. Tt is straightfor-
ward to check that a function f = (J,cy fi is a well defined function and that it is the
unique isomorphism between HF and (N, BIT).

Since we can identify elements of FW’ and HF with natural numbers we can easily
extend our definition of FM(A) to these models and talk about FM(FW*) and FM (HF).

We use XX TT¥ | Ak notation in three different meanings. Their meaning should be clear
from the context. For example Ayp-formula is an arithmetical formula with all quantifier



bounded. ¥I -formula is a formula of the form Jz; ... 3z, Vy; ... YVynp, where ¢ is a A
formula.

Y0 set (IT%-set) is a set of natural numbers definable by an arithmetical 39 (T1%)
formula. Recall that a set is AY if it is both ¥ and TI? set.

A set (class) of models is Xi if there is a X} sentence ¢ (existential second order
formula) such that this set (class) contains exactly these models in which ¢ is true.

Finally, let us describe the expressive power of arithmetic in finite models in terms of
computational complexity.

Let NLINTIME; be the class of relations which are computable on nondeterministic
Turing machines which works in linear time. Then, NLINTIME,,; = NLINTIME, NINTIME:
is the class of relations which are computable on nondeterministic Turin machines which
works in linear time and use the oracle from NLINTIME;. By the linear time hierarchy;,
LINH, we denote the union of all NLINTIME;.

It is known, from the results of Wrathall, [Wra78], and Bennett, [Ben62], that A,
definable relations in the standard model are just relations in the linear time hierarchy.
Now we formulate a version of this theorem for finite models.

Let R C w* be the relation in LINH. Then, there is a formula ¢ (z1, ..., z) such that
for each model N; € FM(N) the following holds:

RN{0,...,i— 1} ={(a1,...,ax) : N; = ¥lay, ..., ax]},

that is for each i > 0, 1) defines in N; the relation R restricted to the universe of Nj. It
follows that in finite models the expressive power of arithmetical formulas is essentially
the same as Ay formulas in the standard model N. Let us remark that this fact is not
totally obvious because in the standard model we can bound quantifiers by arbitrary
terms of our language. Thus, having a free variable x we can bound quantifiers by any
polynomial in . On the other hand in finite models we have no acces to elements which
are greater than the maximal element of a given finite model. To show that we can replace
the quantification bounded by terms with quantification bounded by variables only one
should use the result by Paris and Dimitracopoulos from [PD82]. They show there (in
proposition 1) that each Ay formula (with terms) is equivalent to a Ay formula in the
relational arithmetical language with only variables as quantifiers bounds. (To be exact it
should be said that Paris and Dimitracopoulos consider Ay formulas with complex terms
inside and only variables as bounds for quantifiers. However, it is easy to translate e.g.
Qr < zx* zp(x) as Qry < 2Qx2 < zp(x12 + 2). Thus, this restriction is not essential in
obtaining the theorem in the form which we present.)

3 Elementary properties of sl-theories

A basic logical properties of the set of sentences sl(A) are given in the following proposi-
tion.



Proposition 3.1 ([Mos01],[KTZ]) For every structure A having as a universe the set
of natural numbers we have

a) sl(A) have no finite models

b) sl(A) is closed under logical consequences, i.e. for every sentence ¢ we have: p €
sl(A) if and only if sl(A) F .

c) sl(A) is consistent

d) A sentence ¢ is consistent with sl(A) if and only if ¢ is true in infinitely many
structures from FM(A).

e) sl(A) is not finitely axiomatizable

Proof. To prove (a) it is enough to observe that for every natural n the sentence ”there
exists at least n elements” holds in all structures Ay, where k£ > n. The point (b) follows
immediately from the definition of sl. Points (¢) and (d) are immediate consequencies of
(b). To prove (e) assume that sl(A) is finitely axiomatizable. So, there exists a sentence
¢ which is an axiomatization of sl(.A). This means that every model for ¢ is a model for
sl(A). Thus by (a) every model for ¢ is infinite. But by (b) ¢ € sl(A) what means that
 is true in structure A,, if n is enough big. So, ¢ has a finite model. Contradiction.

An easy verification shows that we have the following relation between the theory of
a structure A and sl(A).

Proposition 3.2 ([KZ05]) a) If A = ¢ and ¢ is existential sentence then ¢ € sl(A).
b) If A= ¢ and ¢ is a X—sentence without function symbols then ¢ € sl(A).

By Los theorem (see e.g. [BS71]) we can easily deduce that for every ultrafilter F
on N and every ¢ € sl(A), l,enAn/F = ¢. So, for every ultrafilter F' on N the theory
Th(Il,enA,/F) is a complete extension of sl(A).

We can also characterize extensions of the theory sl(.A) by an other way. For this aim
we need to generalize the notion of sl-theory.

Let X C N. By sl-theory of A restricted to X we mean the following set of sentences

slx(A)={¢ : FIkYVn>k(ne X = A, Ep)}.

When X is a cofinite set then slx(.A) is just sl(A) but in general sly(.4) could contain
more sentences. Obviously, for an arbitrary infinite set of natural numbers X, the set of
sentences sly (A) has similar logical properties as sl(A). In particular, it has the properties
expressed in propositions 3.1 and 3.2. As we will see, any complete extension T of sl(.A)
can be characterized by a suitable X.

Theorem 3.3 ([KTZ]) For A and any set of sentences T D sl(A) closed under first
order consequencies one can choose an X such that T = slx(A).

Proof. Let T = {¢;}ien be an extension of sl(A). Let (¢;)ien be a sequence of all
consistent with 7" sentences. Moreover, assume that every sentence which is consistent



with 7" occurs in (¢;);en infinitely many times. We construct a sequence of integers (z;)ien
as follows:

To = 0

iy =min{n : z; <n and A, = ; A /\jgiJrl i}

Since T is a consistent extension of sl(A) and for each i, v, is a consistent with
T sentence then for each i the sentence t; A \,, ¢r is consistent with sl(A). By the
proposition 3.1(d) this sentence has arbitrary large finite models in FM(A). Therefore,
(x;)ien is a well defined infinite sequence of integers. Moreover, we have:

o 1; < wi, fori €N,
e foralli € N, forall j > i, A,, = ¢;,

e if 1) is a sentence consistent with 7" then for arbitrary ¢ there is j > i such that

A .

From the above properties it follows that for X = {z;}ien, slx(A) =T.
UJ

From the proof of the last teorem we can deduce the following.

Corollary 3.4 For A and any complete extension T of sl(A) one can choose an X such
that T = slx (A). Moreover, X is recursive in T

The following observation follows immediately from the definition and Lo$ theorem.

Proposition 3.5 For arbitrary infinite set X C N and nonprincipal ultrafilter U on N
such that X € U, slx(A) C Th(]],en An/U).

Let us observe that if 7" is a complete extension of sl(A) and X is a set constructed
in the proof of theorem 3.3 then for any nonprincipal ultrafilter U such that X € U,
T = Th(]],,en An/U). So, we have the following.

Proposition 3.6 For arbitrary complete extension T of sl(A) there exists a nonprincipal
ultrafilter U such that T = Th([[,,cn An/U).

From propositions 3.6 we have

Corollary 3.7 sl(A) = " Th(]],cn An/U), where the intersection is taken over all non-
U
principal ultrafilters on N.



4 Representing concepts in finite models

One of the main questions? related to finite arithmetics is the problem of FM-representability
in a given FM—-domain.

Let an arithmetical model A be given, K = FM(A). Let us recall that a sentence ¢
is true in sufficiently large models from K ( K =4 ¢ ) if there is n, such that for all k&
greater than n, Ay = ¢.

Let ¢(x1,...,2,) be a formula and S C w™. We say that p(z1,...,x,) FM-represents
S in K if for all a4, ..., a, € w the following two conditions are satisfied:

1. if S(aq,...,a,) then K =4 ¢(aq,. .., a,),
2. if =S(ay,...,a,) then K g4 —p(ay,...,a,),

So, the idea of this definition is that a formula ¢ FM-represents a relation between
natural numbers if for any given finite fragment of that relation ¢ correctly describes this
fragment in all sufficiently large finite initial segments of A (for both positive and negative
cases).

This notion and its basic properties was presented in the paper [Mos01]. Originally it
was motivated by studying truth definitions in finite models (FM truth definitions).

4.1 FM truth definitions

For explaining the relation, firstly let us recall some historical facts about diagonal se-
mantical arguments from papers by Godel [G6d31] and Tarski [Tar33].

Godel’s first theorem is traditionally justified as follows: firstly we prove that all
notions necessary for the diagonal lemma and proof theoretic relations are recursive.®
Then we prove that all recursive notions are representable in the considered theory (e.g.
PA), and combining this two ideas we construct a proper independent statement.

From our current point of view Tarski’s contribution was mainly philosophical. At the
begining of his historical paper Godel essentially gives the proof of Tarski’s theorem about
undefinablity of truth — calling it an informal argument for his first main theorem.*

Tarski’s undefinability of truth theorem can be justified according to the same scheme.
Firstly we prove that all the notions required for the diagonal lemma are arithmetically
definable. Then we have the lemma in the following form.

2This opinion is of course motivated by our methamathematical point of view.

3As a matter of fact Godel considered primitively recursive relations. However, a few years later his
idea was improved by observing that exactly recursive notions are representable in this way. Let us recall
that Godel’s paper contains the first mathematical approximation of the notion of computability.

4Tt is known that the work by Tarski was independent from Gédel. The first version of his work was
presented before publication of the paper by Gédel. Nevertheless all later presentations of ideas of Tarski
are combined with the argument by Godel.

Godel’s considerations were essentially more subtle from logical point of view. Proof theoretical ap-
proach assumed by Godel gives better understanding assumptions, and — as a result — gives as a
corollary another important theorem the second Godel theorem. The main disadvantage of his approach
is the lack of understanding semantics, and semantics was the main contribution of Tarski. Tarski’s
contribution allows to treat Godel’s informal argument as a correct easy proof of the first Gédel theorem.
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Lemma 4.1 (The diagonal lemma) For each arithmetical formula ¢(x) with one free
variable x there is an arthmetical sentence 1 such that N = (v = o("¢7)), where "7 is
the Godel number for 1.

For the notion of truth Tarski assumes very weak and basic condition. Particularly a
formula p(z) with one free variable x defines arithmetical truth if N' = (¥ = o(T¢7)),
for each arithmetical sentence 1).° Now we can easily justify the following.

Theorem 4.2 (The Tarski undefinability of truth theorem) There is no arithmeti-
cal formula defining arithmetical truth.

Proof. Let us assume the opposite. Then there is a formula ¢ (z) with one free vari-
able z such that N = (¢ = p("¢™)), for each arithmetical sentence 1. However — by the
diagonal lemma — there is an arithmetical sentence vy such that N' = (g = —¢(T1))).
Combaining these two statements we easily obtain the contradiction. [J

Let us observe that in this reasoning we essentially use the fact that arithmetical
formulae are closed on negations. Logics not closed on negations can contain its own
truth definitions. One of the most important examples is so called ¥1-logic.

This theorem gives a very powerfull tool for proving hierarchy theorems for second
order logic — as well as for other logics. Having two logics L and L' we say that L’
is stronger than L if each class of models definable by L—sentences is also definable by
L'-sentences but not vice versa. The fact that L’ is stronger than L can be justified by the
Tarski method by proving that the logic L’ have a formula defining truth for L—sentences.
Another application of the method is proving that some logics are not closed on negations.
For this purpose it suffices to show that the logic considered has a formula defining truth
for all of its sentences. In this way we can easily justify that X]-logic is not closed on
negations.

We recall these ideas for explaining the idea of transferring the method to finite models.
We know — by Fagin’s theorem (see [Fag74]) — that X]-logic on finite models capture
NP complexity class. It means particularly that Xl-logic is equivalent to IIi-logic on
finite models. Because negations of ¥{—formulae are eqivalent to ITI{—formulae then one of
the most difficult open problems of computational complexity — whether NP = coN P —is
equivalent to the question whether ¥1-logic is closed on negations on finite models. As we
observed the method of truth definitions solves the question negatively for infinite models.
The problem restricted to finite models seems to be very hard and remains open. Can
we apply a similar methods in finite models for answering such questions? An attempt of
transferring the method to finite models framework was made in [Mos93] (published later
in [Mos01]%).

5This definition — in english literature — is called T—convention. However, in polish version of the
Tarski’s work it is called P—convention and in german version of the Tarski’s work it is called W—
convention. The both names are taken from polish and german words for truth — correspondingly:
prawda and Warheit.

6The paper [Mos93] circulated as a manuscript and its ideas and results were published only in
conference abstracts, firstly it was published as a part of [Mos01].



The idea is based on the observation that for correct description of the required syntac-
tict properties of a given formula we do not need all natural numbers but some sufficiently
large initial segment of them would be enough. So, we say that a formula p(z) defines
thruth in finite models (shortly FM truth) for a logic L if for each L-sentence 1) the
sentence

v =e(T)
is true in almost all finite models, where "7 is the Godel number of .

For the sake of a proper undefinability theorem we need a suitable version of the

diagonal lemma.

Lemma 4.3 (The FM diagonal lemma) For each arithmetical formula p(x) with one
free variable z there is an arthmetical sentence v such that FM(N) Eg (¥ = (")),
where "7 is the Godel number for 1.

Now the FM version of the Tarski undefiability theorem can be justified in almost the
same way as the original one.

Theorem 4.4 (The FM version of the Tarski undefinability of truth theorem)
There is no arithmetical formula defining arithmetical FM truth.

Let us observe that we did not yet prove our FM diagonal lemma. It easily follows
from the FM representability theorem. It will be justified in the next subsection. Now
let us observe that FM version of the Tarski theorem can be applied in a similar way
as the original version. Similarly as in infinite case FM—truth definitions can be applied
for comparing semantical power of some logics. Particularly if we can give FM—truth
definition in L' for L then L’ restricted to finite models is stronger than L. This method
can be applied equally well for justifying “non closure on negations” properties.

These ideas were developped later in the papers [Mos03, Kol04a]. Leszek Kotodziejezyk
successfully applied the method for computational complexity questions in [Kot04b, Kol05].

4.2 FM representability theorem

For successful applying the methods discussed above we need some representations of
syntactical and semantical properties in finite models. We will use here introduced in the
begining of this section the notion of the F'M-representability.

The class of FM-representable relations essentially depends on on our choice of basic
arithmetical notions. The maximal one (of course for recursive basic relations) we obtain
by considering FM—-domain of addition and multiplication.

Theorem 4.5 (The FM-representability theorem, M. Mostowski 2001, [Mos01])
Let S be a relation on natural numbers. Then the following are equivalent:

1. S is FM-representable (in FM(N, x,+)); ( — in terms of expressibility in finite
models)
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2. S is recursive with recrsively enumerable oracle; ( — in terms of oracle machines)
3. S is of degree < 0'; (- in terms of Turing degrees)

4. S is recursive in the limit; ( — in terms of algorithmic learning theory, see [Gol65]

and [Gol67])

5. S is AY in arithmetical hierarchy. ( — in terms of arithmetical definability)

Proof. Of course the FM-representability theorem is the equivalence of the first
condition with all the remaining. The justifications of the equivalence of the conditions 2
— 5 can be found e.g. in [Sho93] and [Gol65].

Let us observe that both cases postive and negative for FM-representability are defined
by X9-formulae. It follows that all FM-representable relations are AJ-definable.

Following [Mos01] we will show that all relations recognized by by oracle Turing ma-
chines with recursively enumerable oracles are FM-representable. Let M; be an oracle
deterministic Turing machine recognizing n—ary relation” R by using an oracle S, which
is recognized by the halting condition by a deterministic Turing machine M. Our FM-
representing formula ¢(z1,...,z,) for R can be formulated as follows:

for a given input x4, ..., x, if there is an accepting computation of My such that all
oracle questions are answered positively exactly if My halts taking them as inputs.

For each given input ay,...,a, we can find a model of size sufficient to contain the
unique M;—computation ¢ and all required witnesses for oracle questions put by c¢ for
accepting them correctly as members of S — all not accepted oracle questions will be
rejected as members of S. [

If the relation satisfies one of the above equivalent conditions then we say that it is
FM-representable.

4.3 FM-representability in other domains

Let us observe that if all the relations in a model A are recursive then the truth relation
of models from FM(A) is also recursive. Thus from the definition of FM-representability
we obtain the following.

Theorem 4.6 Let A be a model on natural numbers having all relations recursive. Then
the relations FM-representable in FM(A) are AY arithmetically definable.

It means that the FM-representability theorem gives the upper bound for the FM—
representability in a natural sense. However for some FM-domains essentially weaker
classes of relations can be FM-represented. Particularly it was observed in [KZ05] that
in the FM—-domain of addition exactly semilinear relations are FM-representable. This
and other interesting examples will be considered in section 7.

"In finite models we cannot restrict to sets of natural numbers because finite models are not closed on
pairing function.
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5 Specific finite arithmetics

The main interesting questions concerning sl-theories are connected with the fundamental
arithmetical structures like (N, +), (N, x), and (N, +, x). Relations between theories of
these structures as well as properties of these theories are subject of well known classical
results (see e.g. a nice survey [Bes02]). Now, we put the following question: if a similar
results hold for sl-theories of these structure or not? An answer for such question is
connected with apriopriate notions of definability and interpretability of sl-theories and
FM-domains.

5.1 Definability

Definition 5.1 Let A be a model, let o = {Py,..., Py} be a relational vocabulary and let
© = (pu, 1, -.,Pm) be the sequence of formulae. Then, by I5(A) we denote the model
of the vocabulary o which is definable in A by p.

We say that B is definable by ¢ in A if B = I15(A).

We say that FM(B) is definable in FM(A) if there is a sequence of formulae @ such
that for each n > 0, B, = I5(A,).

If FM(A) is definable in FM(B) and FM(B) is definable in FM(A) then we say that
FM(A) and FM(B) are mutually definable.

In the case of nonrelational vocabulary the above definition can be formulated in a similar
way, by treating k-ary functions as k + l-ary relation and constants as a unary relation.

Let us remaind that by N we denote the standard model for full arithmetic, i.e.
N = (N, +, x). Now we will consider questions whether FM(N) is definable in FM(A),
where A is a given structure. A natural way of proving that the answer for such a question
is positive is an adaptation of a proof of the analogous results for infinite structure.
However such adaptation usually is not easy because in finite structure we have a strict
limitation for size of numbers which can be used. The situation is much easier if a needed
definition is done by a Ag formula, where quantifiers are bounded.

It is known that the relation BIT is definable in FM(A) and conversly, addition and
multiplication are definable in (N, BIT). Formulas giving needed definitions are rather
complicated and can not be used in the case of finite structures. However in the paper
[BIS90] it is proved that FM(N) is definable in FM((N, BIT, <)). In [DDLW9S] it is proved
that the standard ordering relation is definable in FM(HF), i.e. FM((N, <)) is definable
in FM(HF). Using this definability it is also proved that addition and multiplication is
definable in FM(HF). Thus we have

Theorem 5.2 ([DDLW98]) FM(N) and FM(HF) are mutually definable.

Quine in [Qui46] proved that in the structure FW it can be defined addition and
multiplication. Later Bennett in [Ben62] observed that using ordering these definition
can be written by Ag-formulas. Unfortunately this idea cannot be repeated in the finite
models context because value of used here terms can exceed the maximal element of
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a finite model. This concerns terms in the language of FW which occurs in bounded
quantification.

Zdanowski, in [Zda05] shown that in FM(FW) one can define FM(N), even though
we have no standard ordering relation in the language of FM(FW). In the first part of
the proof in [Zda05] it is shown that the ordering relation is definable in FM(FW). Then,
using this relation, it is quite straightforward, although tedious, to define addition and
multiplication.

Theorem 5.3 ([Zda05], see also [KZ05]) FM(N) and FM(FW) are mutually defin-
able.

Using the well known equivalence: z+y =2 < (zz+1)(yz+1) = 2%(zy + 1) + 1 we
can define addition using multiplication and successor function. However, this equivalence
cannot be directly applied to define addition over finite structures. When z,y < 7 then
r 4y < n. But if additionaly v/n < z,y and z = z + y then (zz + 1)(yz + 1) > n. So,
the above equivalence does not hold in finite structure. However using a different method
Troy Lee proved that addition can be defined over finite structures with multiplication
and ordering. Moreover, he has show that the presence of ordering and coprimality is
sufficient. So, we have the following.

Theorem 5.4 ([Lee03]) The following FM-domains are mutually definable with FM(N):
FM((N, x, <)), FM((N, |, <)), FM((N, L, <)).

We ilustrate a kind of arguments used in a proof of this theorem by showing how to
define multiplication using addition and coprimality relation. At the first we observe that
the followng formula

rA£0Nz£INVYO<y<z—y L)

defines primality property ”"x is a prime number” (note that inequality is defined using
addition). Now, we define multiplication over primes p; and po, as the smallest nonzero
number not coprime to both p; and ps. Finally, to define a multiplication over all natural
numbers we use the number theoretical results claiming that every natural number greater
than 1 is a sum of not more than 7 primes.

Let <p denotes usual inequality relation restricted to the set of all prime numbers.

Using the method of Ehrenfeucht-Fraissé games Zdanowski proved the following.

Theorem 5.5 ([Zda05]) FM(N) is not definable in FM((N, x, <p)), in fact even FM((N, <
)) is not definable in FM((N, x, <p)).

So, this result suggest that we cannot expect strong, or even any, strengthening of
results of Troy Lee.

Using the exponentiation function z¥ we can easily define in infinite structure addition
and multiplication. For example we have zy = z < Vt((¢*)? = t*). But in finite structures
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such equivalence does not hold. If n is the size of our finite model and =,y < n are
sufficiently big then it can happen that zy is in the model (i.e. xy < n) and (2%)¥ is not in
the model (i.e. (2%)Y > n). Then the result of multiplication of x by y cannot be defined
by the above formula. Moreover, surprisingly we have the following.

Theorem 5.6 ([KZ05]) FM((N, exp)) is definable in FM((N, x)), and not vice versa.

5.2 Interpretability

Another method which allows to compare theories is the method of interpretation. This
method was applied in several model-theoretical achievements.
The interpretation notion is a generalization of the definability notion.

Definition 5.7 Let A be a model, let o = {Py, ..., Py} be a relational vocabulary and let
© = (pu,¥1,---,0m) be the sequence of formulae.

We say that EM(B) is interpretable on initial segments (shortly 1S-interpretable) in
FM(A) if there is a sequence of formulae @ and unbounded and nondecreasing function

[+ N — N such that for each n >0, By = 15(Ay).
In an obvious way we can extend this definition to the case of nonrelational signature o.

So, FM(B) is IS-interpretable in FM(A) if on initial segments of the structures of
FM(A) the structures from FM(B) can be defined. The important thing is that the
interpretability preserves FM-repesentability as well as undecidability of FM-theories.
We have the following:

Theorem 5.8 ([MWO04]) FM(N) is IS—interpretable in FM((N,|)).

The crucial point in the proof of the above theorem is the observation that using
divisibility relation it can be defined the ordering restricted to some initial segment.
Namely, let us consider the following formula ¢ (z,y):

(zLlazAzlyAJwx|wAz|w)A-Fw(ly|wAz|w)).

It can be proved that for arbitrary natural numbers a,b such that (ab)®> < n we have:
(N,]) | ¢<[a,b] if and only if a < b. So,the formula ¢. defines the usual ordering in
(N, |),, on the initial segment of lenght +/n. This allows to define on such initial segment
addition and multiplication what gives us needed [S-interpretability.

Obviously, in infinite as well as in finite structures the coprimality relation is definable
by divisibility relation. Moreover, the divisibility relation can not be defined by copri-
mality relation. To see this it is enough to observe that using coprimality relation it is
not possible to distinguish between different powers of the same prime number. However,
using a more general notion of interpretation (for definition see [Szcz77] or [Hod93]) it
can be proved the following.

Theorem 5.9 ([MZ05]) FM(N) is interpretable in FM((N, L1)).

Roughly speaking the proof of the theorem goes by construction within FM((N, L))
an interpretation of addition and multiplication on indices of prime numbers.
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6 Decidability of finite arithmetics

It is well known that the theory of addition as well as theory of multiplication (i.e
Th((N,+)) and Th((N, x)) is decidable. So, a natural question arise: what about a
decidability of sl-theories of such structures? It is not to difficult to observe that some
decidability results for infinite arithmetics implies the same results for finite arithmetic. It
is enough to observe that using ordering relation we can define a translation of a formulas
from the language of finite structures to formulas of the language of infinite structures
in such a way that if a sentence ¢ is a translation of the sentence ¢ then ¢ is true in
sufficiently large finite models if and only if ¢ is true in infinite model. Moreover, if the
ordering relation is Ay-definable in infinite structure then the sentence ¢ is always 3
sentence. Thus we have:

Proposition 6.1 If X9 theory of the structure (A, <) is decidable then sl(FM(A)) is
decidable.

From that results we obtain that the following theories are decidable: sl((N, <)),
sI((N, +)), sl((N, +, k%)) for arbitrary fixed k.

We can not apply the last proposition to the theory of multiplication because the
theory of the structure (N, x, <) is undecidable. Indeed, as it is proved in [KZ05] FM(N)
is IS-interpretable in (N, x) what implies undecidability of the theory sl((N, x)). However,
we have the following decidability result

Theorem 6.1 ([KZ05]) The existential theory of sl(FM((N, x, <))) is decidable.

Actually, the result on undecidability of the sl-theory of multiplication also follows
from the mentioned above results contained in theorems 5.8 and 5.9. These give also the
following conclusion

Theorem 6.2 (see [MZ05], [MWO04],[Zda05], Trachtenbrot theorem) The set of
sentences true in all structures from FM(A) is I1Y-complete and therefore undecidable, for

A being one of the following arithmetics: (N, 4+, %), (N, x), (N,]), (N, L).

Theorem 6.3 (see [KZ05], [MZ05], [MWO04],[Zda05],) The theorysl(FM(A)) is 39~
complete and therefore undecidable for A being one of the following arithmetics: (N, 4, x, <
,0,1), (N, %), (N, ]), (N, L).

7 FM-representability in poor arithmetics

In this section we consider the question for a given arithmetic A, what is the family
of relations which is FM-representable in FM(.A). We saw that if A is a model with
recursive relations then this family is contained in A-relations (see theorem 4.6.) On
the other hand this upper bound is reached in the case of the arithmetic of addition and
multiplication (see theorem 4.5). Now, we will consider some weaker arithmetics.

Firstly, we show how to compare the families of FM-representable relations in FM(.A)
and FM(B) if one family is interpretable in the other one.
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Theorem 7.1 Let FM(A) be IS—interpretable in FM(B). Then, for each R C N", if R is
FM-representable in FM(A) then it is FM-representable in FM(B).

The proof of this theorem is based on a simple translation of a formula which FM-
represents a given R C N” in FM(A) into a formula which FM-represents R in FM(B).
The translations just substitute the basic relations from FM(A) with their definitions in
FM(B) given by an IS-interpretation.

From the above theorem together with FM-representability theorem for FM(A) (see
theorem 4.5) and theorem 4.6 one can infer the following

Theorem 7.2 If A is an arithmetic with decidable relations and such that FM(N') is IS—
intepretable in FM(A) then the family of relations which are FM-representable in FM(A)
is exactly the family of AS-relations.

In particular, A can be one of the following arithmetics: (N, L, <), (N, x), (N,]),
(N, exp).

It follows that even relatively weak arithmetics of finite models FM-reprezent all that can
be represented. Now, we characterize FM-representability in some arithmetics which are
essentially weaker with respect to the class of FM-representable relations.

Firstly, we recall an observation from [KZ05].

Theorem 7.3 Relations which are FM-representable in FM((N, +)) are just the relations
definable in (N, +).

Now, we present an example of arithmetic which can FM-represent relations which
are of arbitrary complexity below AY but which cannot represent all relations from this
class.

Definition 7.4 Let ~ be an equivalence relation on N and let R C N". We say that ~
is a congruence relation for R if for all ai,...,a,,by,...,b. € N such that a; ~ b; for,
1=1,...,r,

(a,...,a,) € R <= (by,...,b,) € R.

Definition 7.5 Fora,b € N, we define a =~ b if a and b have the same prime divisors. A
relation R C N" is coprimality invariant if ~ is a congruence for R.

The following characterization is from [MZ05].

Theorem 7.6 ([MZ05]) R is FM-representable in FM((N, L)) if and only if R is FM-

representable in FM(N') and R is coprimality invariant.

The methods used in [MZ05] can be generalized to characterize FM-representability
for a bigger class of arithmetics.

Definition 7.7 Let n € N— {0} orn = oco. We define the following relations on natural
numbers:
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o x|,y if and only if for each power of a prime q with an exponent not greater than n,
if q¢ divides x then q divides y.

o x =, y if and only if x|,y and y|,x.

The relation | is just divisibility | and =~ is the identity. The relation |; is mutualy
definable with coprimality.

The following theorem generalizes the above results on FM-representability in FM((N; |))
and in FM((N, 1)).

Theorem 7.1 ([Mos07]) Foranyn > 0 orn = oo, a relation R C N" is FM-representable
in FM((N, |,,)) if and only if R is AY—definable and the relation =, is a congruence for
R.

8 Spectra of finite arithmetics

Another way of comparing various arithmetics (and, in fact, even various logics) of finite
models is to consider their spectra.

Definition 8.1 Let K be a class of finite models in a vocabulary o and let ¢ be sentence
of the same vocabulary. The spectrum of ¢ in I, Spec(p, K), is the set of cardinalities of
models from K in which ¢ is true,

Spec(p, ) = {card(M) : M € KA M = ¢} .

The spectrum of a logic L in KC, Speci-(L), is the set of spectra for all formulae of L,
that 1is
Spec(L, K) = {Spec(p, K) : ¢ is a sentence of L} .

We skip L in Spec(L,K) if L is just first order logic.
Sometime, we say the spectrum of arithmetic FM(A) for denoting the spectrum of the
first order logic in Spec(FM(A)).

The importance of this notion in finite models comes, among other things, from its close
relations with computational complexity. E.g. if Fin is a class of all finite models than
the spectrum of first order logic is just the family of sets recognizable in nondeterministic
time 20, Thus, the question whether Spec(Fin) is closed on the complement (known as
Asser problem) is equivalent to the question whether NETIME = coNETIME.®

The situation we are interested in is when K is of the form FM(A), for A being a
standard model for some arithmetic. In this case the following theorem is a classical one.

8NETIME is the class of problems which can be solved on nondeterministic Turing machines in time
20(") and coNETIME is the class of problems whose complements are in NETIME.
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Theorem 8.2 Spec(FM(N)) is exactly the class of sets recognizable in linear time hier-
archy.

Of course from the definability results stated above it follows that arithmetics FM(HF)
and FM(FW"), for ¢t > 2, have the same spectrum as FM(N'). On the other hand there
are examples of arithmetics which have quite easy spectra.

Theorem 8.3 Let A= (N, <). Spec(FM(A)) is the family of finite and cofinite sets.

Proof. We only sketch the proof. Assume, for the sake of contradiction, that there is a
sentence ¢ such that the sets Spec(¢, FM(A)) and Spec(—¢, FM(A)) are infinite. Then,
there are models B and C of the theory sl(FM(A)) such that B |= ¢ and C = —¢. But
cach model for sl(FM(.A)) is an infinite linear discrete ordering with endpoints. It is well
known that such theory is complete. Thus, it is impossible that B = ¢ and C = —¢. O

The spectrum of finite arithmetic of addition only also poses a nice characterization.

Theorem 8.4 ([Sch01]) Let A = (N,+). Spec(MSO,FM(A)) are just semilinear sets
(i.e. the sets definable in A).

Finally, we characterize the spectrum for full arithmetic of addition and multiplication.
Theorem 8.5 Spec(FM(N)) are just sets in the linear time hierarchy.

From the computational point of view the family Spec(FM((N, +)) is easily recogniz-
able. On the other hand the sets in Spec(FM(N)) are likely to be not recognizable in
PTIME. If we consider the spectrum of FM((N, X)) then it was shown in [KZ05] that it
is strictly included in Spec(FM(N)). Nevertheless, there is a close relation between the
spectrum of FM(AN) and the spectrum of FM((N, x)). The form of IS-interpretation of
FM(N) in FM((N, X)) gives the following proposition.

Proposition 8.1 ([KZ05]) Let X belong to the spectrum of arithmetic with addition and
multiplication. Then the set

Y={r+1:In>2mecXA(n—-20+1<r<(n—-1732}
belongs to the spectrum of arithmetic with multiplication.

It follows that the spectra of FM((N, x)) are as hard as the spectra of FM(N') from the
complexity point of view.

Both addition only and multiplication only have nontrivial spectra. The result by
Kolodziejczyk which shows that the artimetics of addition only and of multiplication only
are in a sense orthogonal with respect to spectra they define.

Theorem 8.6 (Kotodziejczyk, see [KZ05]) If X is in the spectrum of FM((N, x))
and FM((N,+)) then X is finite or cofinite.
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We end with the diagram which shows the inclusions between spectra of various arith-
metic. If there is a way along the arrows from the spectrum of one arithmetic to the
spectrum of another one then the first one is strictly included in the second one. The lack
of such a way symbolizes incomparability.

Spec(FM((N, +, x))) = LINH

Spec(FM((N, +))) Spec(FM((N, x)))

Spec(FM((N, exp)))

Spec(FM((N, <))) = Fin U coFin

Relations between spectra of finite arithmetics.

9 Problems and questions

Finite arithmetic in general setting is relatively new research area. We attempted to
give a general state of knowledge of this area. Nevertheless we have an impression that
many interesting and important problems were not undertaken neither by us or by others.
Therefore our list of open problems cannot be treated as a systematic presentation of the
main open problems in the area.

1. What is definable in FM((N, L, <y7)), where I is the set of prime powers and <y is
the ordering relation restricted to the set X. Let us note that in (N, 1, <p;) there are
definable addition and multiplication (see [BR98|). However, definitions developed
in [BR98] use essentially numbers which are of exponential size.

If FM(N) is not definable in FM((N, L, <py)) it would be a natural example of an
arithmetic which does not define + and X in finite models although it does in the
standard model.

2. Consider the spectrum problem for functions treated as relations. In this situation
many results from subsection 8 do not hold.
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3. Extend theorem 5.6 on the other classes of functions with various rates of growing,
e.g. functions from the Grzegorczyk hierarchy.

4. What about (un)decidability of FM((N, <, P)), where P is the set of primes. In the
standard model it is a long standing open problem. If Th((N, <, P)) is decidable
it may be easier to prove it first for Th(FM((N, <, P)). On the other hand, one
can express e.g. twin prime conjecture by asking whether a certain sentence is in

sIFM((N, <, P))).

5. We concentrated in this survey on finite arithmetics with first order logic as underly-
ing logic. It would be interesting to examine properties of various finite arithmetics
in the framework of stronger logics like second order logic, logic with counting quan-
tifiers etc. An analysis of fixed point logic over finite arithmetic of hereditarily finite
sets is given in [AK99.
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