
Undecidability and Concatenation

Andrzej Grzegorczyk Konrad Zdanowski

April 12, 2007

Abstract

We consider the problem stated by Andrzej Grzegorczyk in “Unde-
cidability without arithmetization” (Studia Logica 79(2005)) whether
certain weak theory of concatenation is essentially undecidable. We
give a positive answer for this problem.

1 Introduction and motivations

The present paper is devoted to proving the essential undecidability of the
theory TC of concatenation of words. The paper may be treated as a con-
tinuation of the paper [Grz05] written by the first author. We adopt some of
the style, notation, abbreviations and results of [Grz05].

We consider the theory of concatenation as presented in [Grz05]. This is
a weak theory of words over two letter alphabet Σ = {a, b}. The axioms are
the following:

TC1 x_(y_z) = (x_y)_z,

TC2 x_y = z_w ⇒

((x = z∧y = w)∨∃u((x_u = z∧y = u_w)∨(x = z_u∧u_y = w))),

TC3 ¬(α = x_y),

TC4 ¬(β = x_y),

TC5 ¬(α = β).

Here α and β denote one letter words a and b respectively. Concatenation
may be understood as a function defined on arbitrary texts and such that:

1

if x and y are some texts then x_y is a text composed of the texts x and y
in such a manner that the text y follows immediately the text x.

TC1 and TC2 are due to A. Tarski. The other axioms say only that
one letter words a and b are indivisible and different. Let us note that we
adopt the convention from [Grz05] and we do not have in our universe the
empty word. This is inessential convention since it is easily seen that both
theories of concatenation of words: with and without the empty word are
interpretable one into the other one.1

We call the axiom TC2 as the editor axiom. The intuition for that name
is the following. Let us assume that two editors, A and B, divide the same
book into two volumes: A into x and y and B into z and w. Then, one of
the two things happens. Either they divided the book into the same volumes
or there is a part of the book u such that their partitions differ exactly with
the respect to the placement of u into the end of the first volume or into the
beginning of the second one.

The above theory TC is proved undecidable in [Grz05]. Here we prove
that it is essentially undecidable.

Now, let us say a bit more about motivations. In [Grz05] there are men-
tioned some arguments why the theory TC seems to be interesting. One can
add an argument more. The theory TC may be understood as the theory
of concatenation of texts which may be also infinite ordered strings having
any arbitrary power of symbols and which are ordered in substrings of any
arbitrary order and any power. Hence concatenation may be conceived as
an operation on order-types, which have an additional peculiarity. The con-
ception of order-types has been defined by George Cantor. Cantor defined
also the operation which he called addition of order-types. The Cantor’s
addition satisfies the axioms TC1 and TC2. Cantor’s order-type is the class
of abstraction of a similarity s which is an isomorphic mapping of order.
A text may be conceived as a type of an order R, but we also suppose that
the similarity s identifies the elements which have the peculiarities of a given
set P .

Thus a formal definition of text as a class of abstraction may be the

1Indeed, if we have the empty word in the universe then the formula ∃y(x_y 6= y ∨
y_x 6= y) defines the submodel with the universe consisting of the nonempty words. And
moreover, each model of TC can be obtained as such restriction.

It is a bit harder to define a model with the empty word in a model of TC. If M =
(U, _, a, b) is a model of TC then we can define the set of pairs {(a, a)} ∪ {b} × U and
treat the element (a, a) as the unique empty word and the elements (b, a), (b, b) as two
one letter word. The concatenation operation can be defined from the concatenation in
M . Again, each model of the theory or words with the empty word can be obtained is
this way.

2

following: Let U be an universe and let P be a set (of letters). We consider
pairs 〈R,F 〉 such that R is an order of U and F is a mapping from U into P .
Then, we can set Texts(〈R,F 〉) as the following class of abstraction:

Texts(〈R,F 〉) = {〈R′, F ′〉 : ∃s : U −→ U [s is 1–1 and “onto” and

∀x ∈ U∀y ∈ U (xRy ≡ s(x)R′s(y)) ∧ ∀x ∈ U(F (x) = F ′(s(x)))]}.

A simple example is when the set P contains only two elements and a map-
ping F is such that

∀x ∈ U(F (x) = a ∨ F (x) = b),

where a and b are different.
One can also imagine strings as geometrically continuous entities which

cannot be understood as composed of separate atoms (like points). Thinking
in TC we are not obliged to think about something similar to real finite
texts of letters. These facts open also some new perspectives larger than the
arithmetic of natural numbers.

2 Basic notions

We extend our language with new definable relations. So, we write x ⊆ y as
a shorthand for

x = y ∨ ∃u1∃u2(u1_x = y ∨ u1_x_u2 = y ∨ x_u2 = y).

Of course, the intuitive meaning of x ⊆ y is that the word x is a subword
of y. We write x * y for the negation of x ⊆ y.

For a given alphabet Γ, we write Γ+ to denote the set of all finite non-
empty words over Γ. With some abuse of notation we write also u ⊆ w,
for u, w ∈ Γ+, to state that u is a subword of w. It should be always clear
from the context whether we mean a formula of our formal theory or the
relation between words. These two things should not be mixed together.
The formula, like x ⊆ y, is just a sequence of symbols in our language which
can be interpreted in many various ways, the relation ⊆, which is a subset
of Γ+×Γ+, is a set theoretical object which refers to a property of words (from
the standard model of TC). Therefore, the reader is asked for a constant at-
tention to differentiate the situation when we talk about words u, w ∈ Γ+

such that u ⊆ w from that when we use x ⊆ y as a formula of TC.
We use also x ⊆e y as a shorthand for

x = y ∨ ∃u (x_u = y).

3

The intuitive meaning of the above formula is that x is a word which is an
initial subword of y. However, in contrast to x ⊆ y, we treat x ⊆e y only as
a definitional extension, not as a new atomic formula.

We will often skip the concatenation symbol between two words just as
it is in case of the multiplication symbol in arithmetic. So xy should be
read as x_y. We do this especially often when we concatenate one letter
words. Thus, e.g. αβα should be read as a term α_β_α and the intuitive
meaning of this term is the word aba. Let us note that we did not write
parenthesis in α_β_α. Thus, this term can be read either as (α_β)_α

or α_(β_α). However, these two terms are provably equal under TC1. We
will skip parenthesis in terms whenever possible, that is everywhere.

In our proof we use a theory of concatenation over 3 letters alphabet
Σ′ = {a, b, c}. So, the language of our theory has one binary function sym-
bol _ for concatenation and constants α, β and γ for denoting one letter
words a, b and c, respectively. Accordingly, we need to extend the set of
axioms. We change TC5 into

TC5′ ¬(α = β ∨ α = γ ∨ β = γ)

and we add

TC6 ¬(γ = x_y).

We call this theory TC′. This small extension simplifies our reasoning and
does not affect the main result since this theory is easily interpretable in
the theory TC of concatenation over two letters alphabet. Indeed, work-
ing with the two letter alphabet one can consider only words from the set
{aba, abba, abbba}+. Then, the formula ϕU(x) of the form

βαβ * x ∧ ααα 6⊆ x ∧ ββββ 6⊆ x∧

∃u ⊆ x(αβ_u = x) ∧ ∃u ⊆ x(u_βα = x)

defines within Σ+ the universe of the words from {aba, abba, abbba}+. More-
over, it is straightforward to show that we can prove in TC all axioms of
TC′ if we define α, β and γ as terms αβα, αββα and αβββα and restrict
quantification to the set defined by ϕU(x).

We say that a formula ϕ is ∆0 if all quantifiers in ϕ are of the form
Qx ⊆ y, where Q ∈ {∃, ∀}. That means that all quantifiers are relativized to
subwords of other words. This relativization is a special case of relativizations
of quantifications to a set definable by a formula ϕ(x). In such situations we
use notation

(∀x:ϕ(x))ψ(x) which is ∀x(ϕ(x) ⇒ ψ(x))

4

and
(∃x:ϕ(x))ψ(x) which is ∃x(ϕ(x) ∧ ψ(x)).

Let us define ∆0 formulae which will be used most often as formulae to which
we relativize quantifiers:

1. αβ(x) = (γ * x) which says that x is a word which does not contain c;

2. α(x) = (β * x ∧ γ * x) which says that x is a word which does not
contain b and c;

3. β(x) = (α * x ∧ γ * x) which says that x is a word which does not
contain a and c.

All words in Σ′+ have their names in TC′. We take a convention from
arithmetic and for u ∈ Σ′+ by u we denote the term whose denotation is u.
E.g. abca = αβγα.

We use also an ω–type ordering on the set of words from {a, b}+.

Definition 1 For u, w ∈ {a, b}+, u < w if either the length of u is less than
the length of w or u and w have equal length and u is smaller than w in the
usual lexicographic ordering. More formally, for u, w ∈ {a, b}+, u = un . . . u0

and w = wk . . . w0, where ui, wj ∈ {a, b}, for i ≤ n, j ≤ k, it holds that
u < w if

n < k ∨ [n = k ∧ ∃i ≤ n(∀j ≤ n(i < j ⇒ uj = wj) ∧ ui = a ∧ wi = b)].

An initial segment of this ordering is the following: a, b, aa, ab, ba, bb, aaa,
aab, aba. We fix this enumeration as {ui}i∈ω, so e.g. u0 = a, u1 = b, u2 = aa.
We will show later that this ordering is definable by a formula ϕ<(x, y) of
TC′ and that TC′ proves useful properties of ϕ<(x, y). This formula uses
all three symbols: α, β and γ. We could write this definition already in TC
without the use of the third letter (see e.g. [Qui46] for such a definition).
However, this would make unnecessary complications.

3 The essential undecidability of TC

Our line of the proof of the essential undecidability of TC is classical. Firstly,
we take TC′, an extension of TC. By the remark made in Section 2 it is
enough to show the essential undecidability of TC′. Then, we show the Σ1–
completeness of TC′. Namely, we show for any Σ1–formula ϕ which is true
in the standard model {a, b, c}+ that ϕ is also provable in TC′. Next, we
provide a Σ1 formula ϕ<(x, y) which defines the ω–type ordering < on the

5

words from {a, b}+ in the standard model {a, b, c}+. Then, we show that for
any word u ∈ {a, b}+,

TC′ ` (∀x:αβ(x))(ϕ<(x, u) ⇐⇒
∨

w<u

x = w).

Moreover, there is a formula, which we call HasWit(x), such that for all
u ∈ {a, b}+,

TC′ ` HasWit(u)

and
TC′ ` ∀x(HasWit(x) ⇒ (ϕ<(x, u) ∨ x = u ∨ ϕ<(u, x))).

Having the above facts it is easy to show, using some coding of computa-
tions as finite words, that TC′ is essentially undecidable. We show this final
argument at the end of the paper.

3.1 Σ1–completeness of TC′

Each element u ∈ {a, b, c}+ has its name u in TC′. Thus, to show that TC′

proves all Σ1–sentences true in {a, b}+ it is enough to show this only for ∆0–
sentences. We do this in a series of lemmas. This result itself was proven in
[Grz05]. So we do not include the full proof here but we only write the basic
steps of the proof. We decided to do this because our present formalization
differs from that of [Grz05].

Lemma 2 For each u, w ∈ {a, b, c}+,

TC′ ` ¬(u = w) if and only if u 6= w.

Proof. The proof is by induction on (the length of) u. For the base case
one should use TC5′. For the induction step one should also use associativity
and the editor axiom. We skip the proof here. �

Now, we show that TC′ can handle x ⊆ y relation.

Lemma 3 For all u ∈ {a, b, c}+,

TC′ ` ∀x(x ⊆ u ⇐⇒
∨

w⊆u

x = w).

Proof. Let us observe that the implication from the right to the left is
obvious. Thus, we prove only the converse.

6

The proof is by induction on the word u. For u = a the thesis follows
from the fact that ∀x¬(α = x_y). Similar arguments is used for u = b or
u = c.

Now, let us assume that for some u ∈ {a, b, c}+

TC′ ` ∀x(x ⊆ u ⇐⇒
∨

w⊆u

x = w).

and consider u_a. Now, we work in TC′. Let us assume that x ⊆ u_α. If
x = u_α then there is nothing to prove. So, let us consider three remaining
cases:

1. ∃z x_z = u_α,

2. ∃z z_x = u_α,

3. ∃z∃w z_x_w = u_α.

Let us consider the first case. Then, by the editor axiom, either x = u and
z = α, and we are done, or there exists w such that

x_w = u and z = w_α

or
x = u_w and w_z = α.

The latter case is impossible by TC3. The only remaining case is when
x_w = u and z = w_α. In this case x ⊆ u and we may use our inductive
assumption.

In the second case, z_x = u_α, if x = α then we are done. If x 6= α,
then there is w such that

z_w = u and x = w_α.

Because z_w = u, we have that w ⊆ u. Thus, by the inductive assumption,
∨

r⊆u

w = r.

It follows that
∨

r⊆u

x = r_α.

In the third case either w = α or there is r such that

z_x_r = u ∧ w = r_α.

In both cases x ⊆ u and we can use our inductive assumption. �

As a corollary we obtain the following.

7

Corollary 4 For each u, w ∈ {a, b, c}+,

TC′ ` (u ⊆ w) if and only if u ⊆ w

and
TC′ ` ¬(u ⊆ w) if and only if u * w

Proof. Let u, w ∈ {a, b, c}+. By Lemma 3 we can reduce in TC′ all formu-
lae u ⊆ w to equations between words. Then, by Lemma 2, we can prove or
disprove all equations between words in {a, b, c}+. �

Now, we can easily prove the theorem on Σ1–completeness (originally
proven in [Grz05]).

Theorem 5 ([Grz05]) TC′ proves all true (in {a, b, c}+) Σ1–sentences.

Proof. It is enough to show the theorem only for ∆0–sentences. This
follows from the fact that each element of {a, b, c}+ has its name in TC′.

The proof is by induction on the complexity of a formula ϕ(r1, . . . , rk),

where ϕ is ∆0 and r1, . . . , rk ∈ {a, b, c}+. For basic cases, u = w, ¬(u = w),
u ⊆ w and ¬(u ⊆ w) one should use Lemma 2 and Corollary 4.

We consider the hardest case when ϕ is of the form ∀x ⊆ uψ(x, r1, . . . , rk)

for u, r1, . . . , rk ∈ {a, b, c}+. For this case we can write ϕ in the following
equivalent form using Lemma 3:

∨

w⊆u

ψ(w, r1, . . . , rk).

Now, it is enough to observe that, for each w ⊆ u, our inductive assumption
holds for ψ(w, u1, . . . , uk). �

3.2 The construction of the ω–type ordering

Now, we present the main new ingredient of this work. We show how to
define the ω–type ordering on {a, b}+ in such a way that its properties will
be provable in TC′. The inspiration for the formula ϕ<(x, y) which defines the
ordering < is from the article by Quine, [Qui46]. However, the constructions
of [Qui46] are of semantical character and work in the standard model. We
put the main stress on the provability of some properties of ϕ< in a weak
theory TC′.

8

Definition 6 Let {ui}i∈ω be the enumeration of words from {a, b}+ in the
ordering <. The witness for a word u = ui is the word of the form

c_u0_c_u1_c_u2_. . ._c_ui−1_c_ui_c.

We denote the witness for ui by wi.

We also want to provide a recursive definition of the witness wi for a
word ui. A witness for u0 = a is w0 = cac and the witness for ui+1 is a word
wi_ui+1_c, where wi is a witness for ui.

Now, we define the formula Next(z, x, y, w) which states that x and y are
successive parts of w such that x ∈ {a}+, y ∈ {b}+, cxc ⊆ w and cyc ⊆ w

and such that there is no word in w of the form csc, for s ∈ {a}+ ∪ {b}+,
between x and y. Moreover, to fix a position of x in w we use an additional
word z such that z_x ⊆e w. Thus, x is a subword of w which starts just
after z.

Definition 7 Let the formula Next(z, x, y, w) be the following

α(x) ∧ β(y) ∧ zx ⊆e w ∧ (z = γ ∨ ∃t ⊆ z(tγ = z)) ∧ zxγ ⊆e w∧

{zxγyγ ⊆e w ∨ ∃t ⊆ w[zxγtγyγ ⊆e w∧

(∀s:αβ(y)) (γsγ ⊆ γtγ ⇒ (¬α(s) ∧ ¬β(s)))]}.

Now, we define a formula Wit(x, y) which defines a relation “y is the
witness for x”.

Definition 8 The formula Wit(x, y) is the following formula

(x = α ∧ y = γαγ) ∨ (x = β ∧ y = γαγβγ)∨

{αβ(x) ∧ x 6= α ∧ x 6= β ∧ γαγβγ ⊆e y ∧ ∃z ⊆ y(zγxγ = y ∧ ¬(x ⊆ z))∧

∀z ⊆ y(∀z1:αβ(z1))(∀z2:αβ(z2))(zγz1γz2γ ⊆e y ⇒ Succ(zγ, z1, z2, y))∧

∀z ⊆ y(∀z1:αβ(z1))((zγz1γ ⊆e y ∧ z1 6= x) ⇒

(∃z2:αβ(z2))(zγz1γz2γ ⊆e y ∧ Succ(zγ, z1, z2, y)))},

where Succ(z, z1, z2, y) states (with the help of y) that z2 is a successor of z1

9

in the ordering <. It assumes that zz1γz2 ⊆e y. It has the form

(z1 = α ∧ z2 = β)∨

∃u ⊆ z1(uα = z1 ∧ uβ = z2)∨

(β(z1) ∧ ∃s ⊆e z ∃t ⊆ z(Next(s, t, z1, y) ∧ z2 = αt))∨

∃u ⊆ z1(β(u) ∧ αu = z1∧

∃s ⊆e z ∃t ⊆ w(α(t) ∧ Next(s, t, u, w) ∧ z2 = βt)))∨

∃u ⊆ z1(β(u) ∧ ∃r ⊆ z1(rαu = z1∧

∃s ⊆e z ∃t ⊆ z(α(t) ∧ Next(s, t, u, w) ∧ z2 = rβt))).

Before we comment on formulae Wit and Succ we present a simple lemma
which will be usefull in our analysis.

Lemma 9 Let u, w ∈ {a, b, c}+ such that ({a, b, c}+
,_, a, b, c) |= Wit[u, w].

Then, for all s ∈ {a, b, c}+ and for all i, j > 0 such that ({a, b, c}+
,_, a, b, c) |=

Next[s, ai, bj , w] it holds that i = j.

Proof. Let us assume that ({a, b, c}+
,_, a, b, c) |= Wit[u, w]. We prove by

induction on the length of s that for all i, j > 0, if ({a, b, c}+
,_, a, b, c) |=

Next[s, ai, bj , w] then i = j.
If the length of s is 1 then s = c and, by the first line of Wit, i = j = 1.
Now, let s ⊆e w be such that ({a, b, c}+

,_, a, b, c) |= Wit[s, ai, bj , w] and
let us assume that the lemma holds for all s′ ⊆e w such that the length of s′

is less than s.
There are words x1, . . . , xn ∈ {a, b}+ − ({a}+ ∪ {b}+) such that

saicx1c . . . cxncb
jc ⊆e w.

Let x0 = ai and xn+1 = bj . By the third line of the formula Wit, for each
0 ≤ k ≤ n,

({a, b, c}+
,_, a, b, c) |= Succ[sx0c . . . cxk−1c, xk, xk+1, w]. (1)

Then, by our inductive assumption, for each s′ ⊆e s such that s′ 6= s, if

({a, b, c}+
,_, a, b, c) |= Next[s′, ar, bs, w]

then r = s. It follows that the only case in which the lengths of xk and xk+1

in (1) may be different is described by the third line of the formula Succ.
But this line never holds because for each 0 ≤ k ≤ n, xk+1 6∈ {a}+. Thus,

10

the lengths of x0, x1, . . . , xn+1 are equal and, in consequence, i = j. �

Now, let us comment a bit on Succ(z, z1, z2, y). In the first line we just
consider the case which is a kind of the starting point. In the second line
of Succ(z, z1, z2, y) we consider the simple situation when z1 is a word which
ends with the letter a. Then, z2 has to be the same word but with the
last a changed to b. Then, we consider the situation when z1 consists only
of letters b and we find, using the formula Next(s, t, z1, y), the word t which
has the same length as z1 and consists only of a’s (here we need Lemma 9).
In this situation z2 is just t extended by one letter a. In the fourth and the
fifth line we consider the situation when z1 is of the form abn that is when
it is the letter a followed by some number of b’s. Then, z2 has the form ban.
The last lines are just a generalization of this case to the word z1 of the form
rabn, where r ∈ {a, b}+. Let us remark that we have to consider these cases
separately because we have no empty word in our universe.

The formula Wit(x, y) is ∆0 thus TC′ proves all true instances of Wit(u, w),
for u, w ∈ {a, b}+. However, we need the following stronger statement.

Lemma 10 For all u ∈ {a, b}+,

TC′ ` ∃=1wWit(u, w).

Proof. Let u = ui in <–enumeration and let wi be a witness for u. Then,
since Wit(ui, wi) is a true ∆0–formula we have

TC′ ` Wit(ui, wi).

Now, let t be a new constant. Then, by induction on k < i, we can prove the
following statement

TC + Wit(ui, t) ` ∃r(wk_r = t).

Then, by the last line of the formula Wit(x, y) we have

wi = t ∨ ∃r(wi_r = t).

However the second disjunct, ∃r(wi_r = t), is impossible by the following
argument. In the second line of the formula Wit(x, y) we state that y ends
with γxγ and that there is no x before this occurrence. Thus, if Wit(ui, t)
then

∃z(zγuiγ = t ∧ ¬(ui ⊆ z)).

But, we know that a witness for ui is an initial segment of t and that this
witness ends with a word γuiγ. So, the only possibility is that t = wi. �

11

Definition 11 We write a formula ϕ<(x, y) which defines the < ordering:

∃z∃w(Wit(x, z) ∧ Wit(y, w) ∧ ∃r(z_r = w)).

We show that each finite fragment of the ordering < which is below some
u ∈ {a, b}+ is properly described in TC′ by the formula ϕ<(x, y).

Lemma 12 For all u ∈ {a, b}+,

TC′ ` (∀x:αβ(x))(ϕ<(x, u) ⇐⇒
∨

r<u

x = r).

Proof. The direction from the right to the left is obvious. For the other
direction let us assume that ϕ<(x, u). But then there is a witness z for x and
there is r such that z_r = w, where w is the unique witness for u. Thus, x
has to be a subword of w, since z ends with γxγ. But subwords of w from
{a, b}+ which occur in w before γuγ are words less than u. Thus,

∨

r<u x = r.
�

The important fact in the essential undecidability proof of a given arith-
metical theory T is often the following:

for each n ∈ ω, T ` ∀x(x < n ∨ x = n ∨ n < x),

where n is the term for the number n. Unfortunately, we cannot prove that
for any u ∈ {a, b}+, TC′ ` ∀x(ϕ<(x, u) ∨ x = u ∨ ϕ<(u, x)). Indeed, in some
nonstandard models M for TC′ there are elements d for which there is no
witness e such that M |= Wit(d, e). Such models can be constructed from
the models for the arithmetic I∆0 + ¬ exp.2 Since this line of proof cannot
be carried out we take the second option and we define within our universe
the set of words for which there are witnesses.

Definition 13 Let HasWit(x) be the formula ∃yWit(x, y).

By Lemma 10, for each u ∈ {a, b}+, TC′ ` HasWit(u). Moreover, we
can prove that words x which satisfy HasWit(x) have good properties in our
ordering.

2Indeed, we can treat the elements of a given model M |= I∆0 as words over some fixed
k–ary alphabet, e.g. 0 could be the empty word, 1 the word a, 2 the word b, 3 is the word
aa, etc. Then, the concatenation operation is definable by a ∆0 formula and has the rate
of growth of multiplication (see e.g. [HP93]). However, it could be proven, in I∆0, that
if a number w interprets a witness for a number u, then it has to be exponentially bigger
than u. Thus, if our model does not satisfy the totality of exp then not all its elements
will have witnesses.

12

Theorem 14 For each u ∈ {a, b}+,

TC′ ` ∀x(HasWit(x) ⇒ (ϕ<(x, u) ∨ x = u ∨ ϕ<(u, x))).

Proof. Let u ∈ {a, b}+ be the i–th word in our ω–type enumeration, that
is u = ui. Then, for k ≤ i, the word wk ∈ {a, b, c}+ is, by Lemma 10, the
unique word such that

TC′ ` Wit(uk, wk).

Now, let us assume that HasWit(x) and that w is such that Wit(x, w).
Now, to prove the theorem we need to show in TC′ that

ϕ<(x, u) ∨ x = u ∨ ϕ<(u, x).

So, we assume that ¬x = u and ¬ϕ<(x, u). By Lemma 12 this is equivalent
to

∧

k≤i

¬x = uk.

To finish the proof we need to show that ϕ<(u, x) what is equivalent to

∃z(wi_z = w).

In order to do this, we prove by induction on k, that for all k ≤ i,

∃z(wk_z = w). (2)

Of course we have no induction axioms among axioms of TC′. However, the
induction we need involves only finitely many steps (to be exact i steps).
Thus, we can carry out this reasoning within TC′.

Firstly, we rule out some easy cases. If u = u0 = α and x 6= u then (2)
follows from the first two lines of the formula Wit. Indeed, in this case either
w = γαγβγ or γαγβγ ⊆e w. In both cases ∃z(γαγ_z = w). Thus, we
assume that x 6= α.

For k = 0 and k = 1 equation (2) follows just from the definition of the
formula Wit(x, y) (the first two lines of this formula) and from the fact that
x 6= α and x 6= β.

Now, let us assume that for some k < i,

∃z(wk_z = w).

Then, by the last line of a formula Wit(x, y), for z1 = uk there is z2 such
that Succ(uk, z2, w) and wk_z2_γ ⊆ w. But, z2 is determined uniquely by
the initial segment of w which is just wk. So, z2 = uk+1. Moreover, it is not

13

the case that wk_z2_γ = w since otherwise x = uk+1, the last word from

{a, b}+ in w. Thus,
∃z(wk_uk+1_γ_z = w).

But wk_uk+1_γ = wk+1 and we obtain

∃z(wk+1_z = w)

what is just (2) for k + 1. �

3.3 The main result

In this subsection we prove our main theorem. Our proof is in the spirit of
many proofs of the essential undecidability of some theory T . We assume
that the reader has some knowledge of basic concepts from the recursion
theory as presented in [Rog67] or [Cut80].

Before we state the main theorem we discuss how one can code compu-
tations in the standard model for finite words.

Lemma 15 There is a method of coding Turing machines, their inputs and
computations as finite words over an alphabet {a, b} such that there are ∆0

formulae Accept(x, y, z) and Reject(x, y, z) with the following property: for
all words M,w,C ∈ {a, b, c}+,

({a, b}+
,_, a, b) |= Accept(M,w,C) ⇐⇒

C is an accepting computation of a machine M on the input w

and

({a, b}+
,_, a, b) |= Reject(M,w,C) ⇐⇒

C is a rejecting computation of M on w.

Proof. We give only a sketch of a proof. The reader interested in an
example of such a coding may consult e.g. the appendix of [Zda05]. Moreover,
let us observe that in the formulation of the lemma we referred to words
coding computations or Turing machines as to computations and Turing
machines. This identification is assumed during the rest of this section. For
simplicity, we consider only deterministic Turing machines using only two
letter alphabet {a, b}.

We present the coding for words with more letters than {a, b}. This is
not essential since we can interpret in TC the words over arbitrary finite
alphabet and ({a, b}+

,_, a, b) is, of course, a model of TC.

14

We can code a Turing machine by a concatenation of words of the form
[[qnx]DCqi], where [,] and q are letters from the alphabet, x ∈ {a, b}, D ∈
{L,R} and C ∈ {a, b}. Then, the word [[qnx]DCqi] indicates that being in
the state n and reading the symbol x the machine writes C on the tape, moves
its head left (L) or right (R) and enters the state i. It is straightforward to
observe that we can write a ∆0 formula which checks that a given word M

is a concatenation of words as above and that no subword of the form [qnx]
repeats twice (the machine is deterministic).

Next, we can code one state of the computation of a machine M as
#u1q

iu2#, where # is a letter from the alphabet and u1, u2 ∈ {a, b}+ describe
the content of the working tape and the string qi indicates the position of the
head and the state of the machine. Again, it is easy to write a ∆0 formula
which defines a set of states. Then, we can code a computation C of M as
the word

MC1 . . . Cm,

where M is a code of the machine and Ci is the i-th configuration during the
computation C. Let us make a convention that the initial state is always 1,
the accepting state is 2 and the rejecting state is 3 and that before M stops
it writes a’s everywhere on the tape and goes to the beginning of the tape.
Thus, the initial configuration on the input w is just a word qw, and the
accepting and rejecting configurations are qqam and qqqak, for somem, k ∈ ω,
respectively. These configurations are easily characterized by ∆0 formulae.

Now, the only difficulty is to write a ∆0 formula which states that each
configuration Cr+1 is the next configuration after Cr, for r < m. Fortunately,
M makes only local changes on the tape. Thus the formula which expresses
this should simply find a word of the form [[qnx]DCqi] in M such that the
word qnx appears in Cr. Then, it should check that Cr+1 can be constructed
from Cr by applying changes according to [[qnx]DCqi]. The disjunction over
all subwords of M of the form [[qnx]DCqi] expresses that that Cr+1 is the
next configuration after Cr. This disjunction is easily expressible by an exis-
tential quantifiers restricted to subwords of M . �

Let us stress here that in the last lemma we require only that Accept
and Reject are ∆0 formulae which defines the suitable concepts in the stan-
dard model for finite words. Nevertheless, by Theorem 5, we can state the
following: for all words M,w,C ∈ {a, b}+,

TC′ ` Accept(M,w,C) ⇐⇒

C is an accepting computation of a machine M on the input w

15

and

TC′ ` Reject(M,w,C) ⇐⇒

C is a rejecting computation of M on w.

This fact will be used in the proof of Theorem 16.
Let us remark here that although TC′ is over the three letters alphabet

{a, b, c} it proves exactly the same ∆0 formulae with parameters from {a, b}+

as TC. This is so because bounded quantification restricted to words from
{a, b}+ does not take us from {a, b}+. So, in the above equations we may
freely use TC or TC′.

Now, we formulate our main theorem.

Theorem 16 TC is essentially undecidable.

Proof. We present the proof for the theory TC′ which is interpretable in
TC. Moreover, we assume

To show the essential undecidability of TC′ we follow the usual reasoning.
We take M to be a Turing machine such that the sets

A =
{

u ∈ {a, b}+ : M accepts u
}

and
B =

{

u ∈ {a, b}+ : M rejects u
}

are recursively inseparable. We define two formulae, γA(x) :=

∃y(HasWit(y) ∧ Accept(M,x, y) ∧ ∀z(ϕ<(z, y) ⇒ ¬Reject(M,x, z)))

and γB(x) :=

∃y(HasWit(y) ∧ Reject(M,x, y) ∧ ∀z(ϕ<(z, y) ⇒ ¬Accept(M,x, z))),

where Accept and Reject are formulae from Lemma 15. Then, for each
u ∈ {a, b}+,

if u ∈ A then TC′ ` γA(u) (3)

and
if u ∈ B then TC′ ` γB(u). (4)

We show (3). If u ∈ A then there is a computation of M which accepts u.
Let C ∈ {a, b}+ be the word coding this computation. Then,

TC′ ` HasWit(C) ∧ Accept(M,u, C).

16

Moreover, we have that

TC′ ` ∀x(ϕ<(x, C) ⇐⇒
∨

w<C

x = w).

But for all such w < C, w is not a rejecting computation ofM on the input u.
Thus,

TC′ ` ∀z(ϕ<(z, C) ⇒ ¬Reject(M,u, z)).

It follows that TC′ ` γA(u).
In the same way one can prove (4).
Now, we know that γA and γB represents sets A and B in TC′. However,

essential features of these formulae are the following equations

if u ∈ A, then TC′ ` ¬γB(u) (5)

and
if u ∈ B, then TC′ ` ¬γA(u). (6)

To show (5) let us assume that u ∈ A and let C be an accepting computation
of M on the input u. We want to show that

TC′ ` ∀y((HasWit(y) ∧ Reject(M,u, y)) ⇒

∃z(ϕ<(z, y) ∧ Accept(M,u, z))).

Now, we work in TC′. Let y be such that HasWit(y) and Reject(M,u, y). It
suffices to show that

ϕ<(C, y) ∧ Accept(M,u, C).

By the definition of C we have Accept(M,u, C). So, it is enough to show
that ϕ<(C, y). Since C is a standard word we have, by Theorem 14,

ϕ<(C, y) ∨ C = y ∨ ϕ<(y, C).

Then, by Lemma 12,

TC′ ` ∀x(ϕ<(x, C) ⇐⇒
∨

r<C

x = r).

None of the words r ≤ C is a rejecting computation of M on the input u.
Moreover, because Reject is a ∆0 formula, this fact is detected by TC′: for
all r ≤ C,

TC′ ` ¬Reject(M,u, r).

17

Since we have Reject(M,u, y), it follows that y cannot be a word which is
less than or equal to C. So, we conclude that ϕ<(C, y). The proof of (6) can
be carried out in the very same manner.

Now, we show that there is no consistent T which extends TC′ and has a
decidable set of consequences. Let us assume, for the sake of contradiction,
that we have such a T . Then, let us consider the set

S =
{

u ∈ {a, b}+ : T ` γA(u)
}

.

Since T is decidable, S is decidable, too. By (3), A ⊆ S and, by (6) and the
fact that T is consistent, B ∩ S = ∅. Thus, we have separated A and B by a
recursive set what is impossible by the definition of A and B. We conclude
that there is no decidable and consistent extension of TC′. �

4 Final remarks

We have proven that TC is essentially undecidable. Let us observe that if
we drop one of the axioms from TC2 to TC5 then we obtain a theory which
has a decidable extension. Indeed, if we drop TC5 then we can interpret all
axioms in the model for arithmetic of addition without zero (ω−{0} ,+, 1, 1).
By Presburger theorem this model has a decidable theory. Similarly, if we
drop TC4, then this theory is satisfied in the model (ω − {0} ,+, 1, 2). Fi-
nally, if we drop the editor axiom then such a theory is satisfied in a finite
model ({a, b, c} , f, a, b), where f is a constant binary function which maps
everything to c. We conjecture that also TC without the first axiom has a de-
cidable extension, so TC is an example of a minimal essentially undecidable
theory.

We do not know whether our style of defining the ω–type ordering on
words poses good properties provably in TC′. Indeed, we showed rather
some basic facts which are needed in the proof of Theorem 16. In particular,
we would like to ask whether there is a formula ψ≤(x, y) such that ψ≤(x, y)
defines ω–type ordering on {a, b}+ in the standard model for concatenation
and such that TC′ would prove that the set of words for which ψ≤ defines the
linear ordering is closed on concatenation Namely, let γ(x) be the following
formula

∀z1∀z2∀z3{
∧

i≤3

ψ≤(zi, x) ⇒

[(ψ≤(z1, z2) ∧ ψ≤(z2, z3)) ⇒ ψ≤(z1, z3)) ∧ (ψ≤(z1, z2) ∨ ψ≤(z2, z1))]}.

18

Thus, γ(x) states that ψ≤(y, z) defines a linear ordering below x. We want
to ask whether there exists such a formula ψ≤(y, z) for which the set defined
by γ(x) constructed for this ψ≤ is closed on concatenation, provably in TC′:

TC′ ` ∀x∀y((γ(x) ∧ γ(y)) ⇒ γ(x_y)).

We conjecture that the answer is positive.
As for the final remark, in [Grz05] the conjecture was stated that TC is

essentially weaker than the Robinson arithmetic Q. Let us formulate this
question in a bit more precise form: whether Q is interpretable in TC. Now,
we feel that the answer is also positive.

Appendix An outline of the possibility of

proving the essential undecidability of TC in

another way

In our collaboration on the essential undecidability of TC we both have
agreed to use the ω–type ordering < of words, but we differ in the taste of
applying it. Konrad Zdanowski wanted to apply the concept of the Turing
machine, Andrzej Grzegorczyk would like to continue his analysis of dis-
cernible relations started in [Grz05] and tried to use the property of repre-
sentability of GD relations. Konrad Zdanowski has accomplished his task
earlier and his solution is exhibited in section 3. Now we draw up the other
way of proving essential undecidability. We assume that the reader has in
hand a copy of [Grz05]. Much of notational conventions in this appendix is
from this article.

Formally we can proceed in TC using Definition 8 of the present paper, or
(perhaps easier) by writing a little different definition based on an intuition
of comparison of two words u and w in the manner step by step: ’one symbol
after another symbol’. Namely we assume that every word begins by its first
symbol and if there are two words u and w:

u = u1u2 . . . uk and w = w1w2 . . . wk . . . wn

then we consider the sequence of pairs of the initial subwords:

〈u1, w1〉, 〈u1u2, w1w2〉, . . . and so on.

Then u is shorter or equal w (in the length) when there is such a sequence of
pairs, in which for any subword of u there is a corresponding subword in w.
This sequence of pairs should be defined as a text (word) by means of an

19

inductive condition. To describe this procedure and the whole sequence we
need to use a code, especially if we do not want to add a new constant γ. If
the two words u, w have the same length then they have a common initial
part and we put that u < w when on the first place where they differ, there
is the sign α in u and the sign β in w.

In this way of proving of our Essential Undecidability Theorem we also
make use of several properties of the relations < and ≤, which are or may be
proved in TC. These properties bind the relations< and ≤ with their defining
formulae: ϕ<(u, w) and ϕ≤(u, w). The properties which are necessary are
mentioned below as lemmas LA - LE :

LA For any m ∈ {a, b}+, TC ` ∀u(ϕ<(u,m) ⇐⇒
∨

r<m u = r).

LB For any n,m ∈ {a, b}+, n < m ≡ TC ` ϕ<(n,m).

LC TC ` ∀y∀u(ϕ<(u, y) ⇒ ϕ≤(u, u))

LD For any m ∈ {a, b}+, TC ` ϕ≤(m,m).

LE For any m ∈ {a, b}+, TC ` ∀u(ϕ≤(u, u) ⇒ (ϕ≤(u,m) ∨ ϕ≤(m, u))).

Let us recall from [Grz05] that ED is the smallest class of relations (of
arbitrary arity) which contains: the binary relation of identity, the ternary
relation of concatenation and which is closed under the logical constructions:

1. of the classical propositional calculus,

2. of the operation of quantification relativized to the subtexts of a given
text.

Let us note that it follows from the definition that each relation in ED is
definable in the standard model for concatenation by a ∆0 formula.

The class GD satisfies the same conditions and is closed also under the
operation of dual quantification. This means that:

If S, T ∈ GD and the relation R satisfies two equivalences:

R(x, . . .) ≡ ∃yS(y, x, . . .) and R(x, . . .) ≡ ∀yT (y, x, . . .)

then also R ∈ GD. The class GD (of General Discernible relations) in the
domain of texts corresponds to the class of General Recursive relations of
integers.

We need the following lemma.

20

Lemma 17 (The Normal Form Lemma) GD is the class of all relations
which may be defined from the relations of the class ED by at most one
application of the operation of dual quantification. The application of dual
quantification may be the last step in defining a given GD relation.

Proof. We shall show that the operation of dual quantification may be
always the last step of the defining-process of a GD relation. (In this proof
all definitions and symbols are taken from [Grz05].) Suppose that S, T ∈ GD
and are defined by dual quantification:

S(x, . . .) ≡ ∀yA(y, x, . . .) and S(x, . . .) ≡ ∃yB(y, x, . . .), (7)

T (x, . . .) ≡ ∀yC(y, x, . . .) and T (x, . . .) ≡ ∃yD(y, x, . . .). (8)

where A,B,C,D ∈ ED.
A new GD relation R (according to definition 6 (of [Grz05])) may be

defined by S and T by using propositional connectives or quantifications
limited or dual. Hence we shall consider the following 4 cases.
1. R is defined by negation:

R(x, . . .) ≡ ¬S(x, . . .).

Then by (7) the relation R may be presented in the dual form (according to
the de Morgan rules) as follows:

R(x, . . .) ≡ ∀yB(y, x, . . .) and R(x, . . .) ≡ ∃yA(y, x, . . .).

If A,B ∈ ED then according to definition 5 also A,B ∈ ED.
2. R is defined by means of conjunction:

R(x, . . .) ≡ ((S(x, ..) ∧ T (x, . . .)) (9)

Then by (7) and (8) R may be presented in the dual form as follows:

R(x, . . .) ≡ ∀y(A(y, x, . . .) ∧ C(y, x, . . .)) (10)

and

R(x, . . .) ≡ ∃w(∃y(y ⊆ w ∧ B(y, x, . . .)) ∧ ∃u(u ⊆ w ∧D(u, x, . . .))). (11)

The formula (10) follows from (9), (7) and (8) by logic of quantifiers.
The formula (11) follows from (9), (7) and (8) because in the theory of

concatenation one can easily prove the following:

∀y∀u∃w(y ⊆ w ∧ u ⊆ w),

21

namely y_u is such an element w. If A,B,C,D ∈ ED, then according to
definition 5 we have that:

{〈y, x, . . .〉 : A(y, x, ..) ∧ C(y, x, ..)} ∈ ED

and also:

{〈w, x, . . .〉 : ∃y(y ⊆ w ∧ B(y, x,∧)) ∧ ∃u(u ⊆ w ∧D(u, x, ..)))} ∈ ED.

3. R is defined by means of limited quantification:

R(x, u, . . .) ≡ ∀z(z ⊆ u ⇒ S(z, x, ..)). (12)

According to (7) the above definition (12) of R implies that:

R(x, u, . . .) ≡ ∀z(z ⊆ u⇒ ∀yA(y, z, x, . . .)) (13)

and
R(x, u, ..) ≡ ∀z(z ⊆ u⇒ ∃yB(y, z, x, . . .)). (14)

From (13) we easily get the following:

R(x, u, . . .) ≡ ∀w[∀z(z ⊆ w ⇒ ∀y(y ⊆ w ⇒ (z ⊆ u⇒ A(y, z, x, . . .))))]
(15)

Namely as w we take the element z_y. The formula (15) shows that R is
defined by application of the general quantifier to an ED relation.

To show that R may be presented also as an application of the existential
quantifier to an ED relation we shall to use in the metatheory a stronger
non-elementary construction.

First let notice that for every x, . . . and every z ⊆ u there may be infinitely
many y such that B(y, z, x, . . .). We should choose one of them. But we may
use the fact that the set of all finite texts is well ordered by the ordering <.
Hence there is the first such y(z,x,...), that B(y(z,x,...), z, x, . . .). For the fixed
u, x, . . . the set of z ⊆ u is finite, thus also the set of tuples 〈z, x, . . .〉 for
z ⊆ u is finite and the set of {y(z,x,...) : z ⊆ u} is also finite. Hence there
exist also a text y0, which contains all texts of the set {y(z,x,...) : z ⊆ u}, this
means such that for any z ⊆ u it is true that y(z,x,...) ⊆ y0. Thus we can
assert that:

R(x, u, . . .) ≡ ∃y0∀z(z ⊆ u⇒ ∃y ⊆ y0B(y, z, x, . . .)). (16)

The formula (16) is dual to (15). The formulae (15) and (16) prove that R
is defined using ED relations by one operation of dual quantification.
4. R is defined by dual quantification.

22

Now we suppose that:

R(. . .) ≡ ∀xS(x, . . .), (17)

R(. . .) ≡ ∃xT (x, . . .), (18)

where S and T satisfy the formulae (7) and (8). Then we shall prove that
two applications of dual quantification (one (7),(8) and the second (17),(18))
can be condense to one. Indeed from (17) and (7) we get that:

R(. . .) ≡ ∀x∀yA(y, x, . . .) ≡ ∀z(∀x ⊆ z∀y ⊆ zA(y, x, . . .)) (19)

and from (18) and (8) we infer that:

R(. . .) ≡ ∃x∃yD(y, x, . . .) ≡ ∃z(∃x ⊆ z ∃y ⊆ z D(y, x, . . .)). (20)

The proofs of (19) and (20) are elementary.
This accomplishes the proof of the lemma. �

Now we can prove the Representability Theorem3:

Theorem 18 (Representability Theorem) If R ∈ GD, TC ⊆ T and T

is consistent, then R is represented in T .

Proof. Let R ∈ GD. According to the Normal Form Lemma there are
two relations A,B ∈ ED such that for any word x, R(x) ≡ ∀yA(x, y) and
R(x) ≡ ∃yB(x, y). Hence, we can also say that:

for each R ∈ GD there are two relations A,B ∈ ED such that for any
word x,

R(x) ≡ ∃yA(x, y) and ¬R(x) ≡ ∃yB(x, y). (21)

According to theorem 12 of [Grz05] there are two formulae Φ and Ψ of
TC such that for all x, y:

A(x, y) ≡ T ` Φ(x, y) and ¬A(x, y) ≡ T ` ¬Φ(x, y), (22)

B(x, y) ≡ T ` Ψ(x, y) and ¬B(x, y) ≡ T ` ¬Ψ(x, y).4 (23)

3We recall that a relation R is said to be represented in the theory T by a formula ϕ

if and only if for all words x1, . . . , xn,

R(x1, . . . , xn) ≡ T ` ϕ(x1, . . . , xn).

4Instead of using theorem 12 of [Grz05] one may note that since A ∈ ED then there
is a ∆0 formula which defines A in the standard model for finite words. If we choose Φ
to be that formula, we will obtain (22) by the fact that the negation of Φ is also a ∆0

formula which defines the complement of A and by Theorem 5 which gives that all true
∆0 sentences are decided in TC.

In the same way one can show (23).

23

Starting from the rule: R ∨ ¬R we get, from: (21)–(23), that:

∀x∃y(A(x, y) ∨ B(x, y)).

Hence there is also the smallest element m(x) (with respect to the relation <
which is of the type ω). Thus, let us define

m(x) = min{y : A(x, y) ∨B(x, y)}, (24)

and thus A(x,m(x)) ∨B(x,m(x)) and

∀x∀y(y < m(x) ⇒ ¬(A(x, y) ∨ B(x, y))), (25)

∃y A(x, y) ≡ A(x,m(x)) and ∃y B(x, y) ≡ B(x,m(x)). (26)

According to definition 7 of [Grz05] and adjusting to the style assumed
in the present paper we shall prove that: there is a formula TC such that:
for every x ∈ {a, b}+,

R(x) ≡ T ` Ξ(x).

For the relation R the corresponding formula may be the following :

Ξ(x) = ∃y(Φ(x, y) ∧ ∀u(ϕ′
<(u, y) ⇒ ¬(Φ(x, u) ∨ Ψ(x, u)))),

where the formula ϕ′
<(u, y) is the following:

(ϕϕ≤
(u, y) ∧ ¬(u = y) ∧ ϕ≤(y, y)) ∨ (ϕ≤(u, u) ∧ ¬ϕ≤(y, y)). (ϕ′

<)

Indeed, for x ∈ {a, b}+ suppose that R(x). Hence from (21), (26) and (22)
we get that:

T ` Φ(x,m(x)) (27)

From (ϕ′
<), lemmas LA, LB, LD and (25), (22), (23) we get that:

T ` ∀u(ϕ′
<(u,m(x)) ⇒ ¬(Φ(x, u) ∨ Ψ(x, u))) (28)

The premises (27) and (28) give the implication: R(x) implies T ` Ξ(x) .
Now, to prove the converse implication suppose that: T ` Ξ(x). If (on

the ground of T) we suppose that:

Φ(x, y), (29)

∀u(ϕ′
<(u, y) ⇒ ¬(Φ(x, u) ∨ Ψ(x, u)))). (30)

Then on the ground of T we may compare the element y with the element
which has the name: m(x). From (22), (23), (24) we get that:

T ` (Φ(x,m(x)) ∨ Ψ(x,m(x))) (31)

24

Hence from (30) and (31) on the ground of T we get that:

¬ϕ′
<(m(x), y)) (32)

On the other hand m(x) ∈ {a, b}+. Then by LD, (32) and (ϕ′
<) we get that:

ϕ≤(m(x), y) ⇒ m(x) = y, (33)

ϕ≤(y, y). (34)

By (33), (34) and LE we have that:

ϕ≤(y,m(x)) ∨m(x) = y. (35)

But according to LA the first possibility of (35) is contradictory to (25), (22),
and (29). Hence it remains that

m(x) = y. (36)

The conclusion (36) which is obtained in the consistent theory T together
with the premise (29) give that T ` Φ(x,m(x)). Hence by (26), (22), (21)
we get that R(x). This accomplishes the proof of representability. �

Having the Representability Theorem we can repeat Gödel’s diagonal
procedure exactly in the same way as in the proof of theorem 17 from [Grz05].
Of course now we take T not as true in the standard model but as an arbitrary
consistent extension of TC.

References

[Cut80] N. Cutland. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

[Grz05] Andrzej Grzegorczyk. Undecidability without arithmetization. Stu-
dia Logica, 1(79):163–230, 2005.

[HP93] P. Hájek and P. Pudlák. Metamathematics of First–Order Arith-
metic. Springer Verlag, 1993.

[Qui46] W. Quine. Concatenation as a basis for arithmetic. Journal of
Symbolic Logic, 11:105–114, 1946.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computabil-
ity. McGraw-Hill Education, 1967.

[Zda05] K. Zdanowski. Arithmetics in finite but potentially infinite worlds.
PhD thesis, Warsaw University, 2005. available at http://

www.impan.gov.pl/~kz/files/KZ PhD.pdf .

25

