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1 – Introduction

I will follow our arXiv preprint, 2019-2020. For a background we refer to
[HP] P. Haissinsky, K. Pilgrim: Coarse expanding conformal dynamics,
Asterisque (2009). Remarkable is also [BM] M. Bonk, D. Meyer,
Expanding Thurston Maps, AMS 2017.

Definition (Finite branched covering)

• f : W1 →W0 continuous between locally compact Hausdorff
topological spaces
• Local homeomorphism except finite set of branching points where it
has bounded topological degree d bigger than 1. Another name critical
points

– T3 1
2
. Metrizable if having a countable basis.

– f is open.
– In surfaces in a neighbourhood of a branching point in adequate polar
charts f (r , θ) = (r , dθ).
If f is holomorphic in complex dimension 1, then f (z) = zd in
holomorphic charts. However here z can be fixed repelling, belonging to
X , whereas for holomorphic f it must be attracting.
– We assume W0 is strongly path-connected, i.e path connected after
removal of any countable set. 2 / 24



Definition (weakly coarse expanding system, WCX)

Let f : W0 →W1 be as above with compact clW1 ⊂W0, satisfying the
– [Expansion] axiom: There exists a finite family UU0 = U0 of connected
open subsets of W0, intersecting the compact repellor
X :=

⋂∞
n=0 f

−n(W0), whose union covers it, and such that for every Y, a
finite open cover of X , there exists N ∈ N such that for every n ≥ N the
family Un consisting of pullbacks of elements of U0 is subordinated to Y.
– [Irreducibility] axiom: For every V open in X f n(V ) = X (leo)
– [Non-triviality] axiom: The repellor X is not a single point.

1) We do not assume Haissinsky-Pilgrim, Bonk-Meyer [Degree] axiom,
saying that the degrees of f n are locally uniformly bounded. This
property is called Semi-hyperbolicity for rational maps. Such are
Thurston maps, where the postcritical set is finite.
2) [Expansion] axiom is (formally) stronger than just generating our
topology at X . The latter follows if for every x ∈ X and open V 3 x we
consider Y consisting of V and a neighbouhood in W0 of its complement
not containing x .
3) Merely UN ≺ U0 so UkN+N ≺ UkN , yields uniform backward shrinking.
4)Notice that if p ∈ X is f -fixed then for open V 3 p small enough⋂

n Compx f
−n(V ) = {p}, i.e. p is repelling.

5) Examples: Lattes, baricentric
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2 – Exponentially contracting metrics

Theorem

Suppose f : W1 →W0 is a finite branched cover and axiom [Expansion]
holds. Then there exist a metric ρ on X compatible with the topology
and constants C > 0, θ < 1 such that for all n ≥ 0

sup
U∈Un

diamρ(U) ≤ Cθn.

– This holds e.g. for f : C→ C rational function, X = J(f ), Riemann
metric, f TCE.
– The same assertion follows from the [metric Expansion] axiom, that
there exists ρ on X such that

lim
n→∞

sup{diamρ(U) : U ∈ Un} = 0.

– Proofs follow from Frink’s metrization lemma. Haisssinsky & Pilgrim
provide different proves via an adequate graph Γ = Γ(U0) and Gromov’s
boundary. Metrics they construct are visual metrics. They are backward
exponentially contracting as above and additionally satisfy
f (B(x , r)) = B(f (x), λr) for some λ > 1 and all x ∈ X and r > 0 small
enough. 4 / 24



Frink’s metrization lemma

Lemma (Aline Frink, BAMS 1937)

Let X be a topological space, and let (Ωn)n≥0 be a sequence of open
neighborhoods of the diagonal ∆ ⊆ X × X , such that

(a) Ω0 = X × X

(b)
⋂∞

n=0 Ωn = ∆, where ∆ is the diagonal in X × X .

(c) For any n ≥ 1,
Ωn ◦ Ωn ◦ Ωn ⊆ Ωn−1

where ◦ is the composition in the sense of relations: i.e.,
R ◦ S = {(x , y) ∈ X × X : ∃z ∈ X s.t. (x , z) ∈ R and (z , y) ∈ S}.

Then there exists a metric ρ on X , compatible with the topology, such
that

Ωn ⊆ {(x , y) ∈ X × X : ρ(x , y) < 2−n} ⊆ Ωn−1

for any n ≥ 1.

We apply it to Ωn := U (2)
Mn = {(x , y) ∈ X × X : ∃U ∈ UnM , x , y ∈ U} for

M large enough.
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3 – Extension to graph Γ and visual metrics

Let f : W0 →W1,Un and X be as in the definition of weakly coarse
expanding map, WCX.
– Following [HP], the vertices of generation n are elements of Un−1,
where n = 1, 2, .... The set of them is denoted S(n). We add the base
vertex of generation 0, denoted o. For n ∈ N and a vertex W ∈ S(n) we
set |W | = n.
Two vertices W1,W2 are joined by an edge (W1,W2) if

||W1| − |W2|| ≤ 1 and W1 ∩W2 ∩ X 6= ∅.

– We decree that each edge is isometric to the Euclidean interval. The
resulting graph Γ = Γ(f ,U0) is a geodesic metric space, 1/2-quasi-starlike
from the base point o, proper (bounded closed balls are compact). Due
to [Expansion] axiom Γ is Gromov hyperbolic, [HP, Thm.3.3.1] .
– We can compactify it taking the above metric multiplied by the factor
e−εn on each edge of ”generation” n. Then ∂Γ = X . f can be extended
to F : cl Γ→ cl Γ by F ((W1,W2)) = (f (W1), f (W2)), ”locally affine”,
expanding by eε. For V also satisfying [Expansion] Γ(f ,U) is
quasi-isometric to Γ(f ,V). The identity on X is quasi-symmetric.
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Theorem (DPTUZ1: Tushar Das, FP, Giulio Tiozzo, Mariusz Urbański,
Anna Zdunik)

Let f : W1 →W0 be a weakly coarse expanding dynamical system
without periodic critical points, let X be its repellor, ρX an exponentially
contracting metric on X compatible with the topology. Then, for every
ϕ : (X , ρX )→ R a Hölder continuous function (potential):
(1) there exists a unique equilibrium state µϕ. Let ψ : (X , ρX )→ R be a
Hölder continuous function (observable), and denote

Snψ(x) :=
∑n−1

k=0 ψ(f k(x)). Then there exists the finite limit

σ2 := limn→∞
1
n

∫
X

(
Snψ(x)− n

∫
ψ dµϕ

)2
dµϕ ≥ 0

such that the following statistical laws hold for the Hölder observable ψ:
(2) Central Limit Theorem, CLT, for the sequence ψ ◦ f k ,
(3) Law of Iterated Logarithm LIL,
(4) Exponential Decay of Correlations, EDC:
There exist constants α > 0 and C ≥ 0 such that for any µϕ–integrable
function χ : X → R, for any β-Hölder function ψ : X → R, and n ≥ 0,∣∣∣∣∫

X

ψ · (χ ◦ f n) dµϕ −
∫
X

ψ dµϕ ·
∫
X

χ dµϕ

∣∣∣∣ ≤ Ce−nα‖χ‖1 · ‖ψ‖β ,

where χ := χ−
∫
X
χ dµϕ, and ‖ · ‖β is the β-Hölder norm.
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Theorem (DPTUZ1 continuation)

(5) Large Deviations – level 1.
For every t ∈ R, we have that

lim
n→∞

1

n
logµϕ

({
x ∈ X : sgn(t)Snψ(x) ≥ sgn(t)n

∫
X

ψ dµϕ+tψ

})
= −t

∫
X

ψ dµϕ+tψ + Ptop(ϕ+ tψ)− Ptop(ϕ).

(6) Moreover, σ = 0 if and only if there exists a continuous u : X → R
such that ψ −

∫
X
ψ dµϕ = u ◦ f − u. (cohomology equation)

(7) Finally, µϕ1 = µϕ2 if and only if there exist K ∈ R and a continuous
u : X → R such that ϕ1 − ϕ2 = u ◦ f − u + K .

In (6) and (7) the function u is Hölder continuous with respect to a
visual metric.

We shall reduce (most of) this theorem to a standard one for
ς : Σd → Σd the shift on the one-sided symbolic space of d = deg f
symbols and φ : Σd → R Hölder.
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Topological pressure and equilibrium states – definitions

Let f : X → X be a continuous map of a compact metric space. A
probability measure µ on X is f -invariant if f?µ = µ, and we let M(f ) be
the set of f -invariant probability measures on X . We denote as hµ(f ) the
metric entropy of f with respect to µ.
Now, consider a continuous function ϕ : X → R, which we call a
potential. The topological pressure of f with potential ϕ is defined as

Ptop(f , ϕ) := sup
µ∈M(f )

{
hµ(f ) +

∫
X

ϕ dµ

}
.

Note that Ptop(ϕ) may also be defined topologically or metrically (via
separated or spanning sets, [PU]). An f -invariant probability measure µ
on X is an equilibrium state for ϕ if it realizes the supremum.
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As in holomorphic dynamics, a special role is played by branching
(critical) points, where the map is not locally injective. A major source of
difficulty in the study of weakly coarse expanding systems is the presence
of repelling periodic critical points in the repellor (not possible if they
attract since they are outside Julia set then).
The systems we consider do not satisfy the [Degree] condition, hence
they are not coarse expanding in the sense of [HP].

Our second result addresses this issue in the case the underlying space is
an open subset of the 2-sphere (which is the case considered in [BM] and
[Zhiqiang Li, Ergodic Theory of Expanding Thurston Maps].
Namely, our results also hold in the presence of periodic critical points as
follows.

Theorem (DPTUZ2)

If f : W1 →W0 is a weakly coarse expanding system and W0 ⊆ S2 is an
open subset of the 2-sphere, with the Euclidean topology, then all claims
(1)-(2)-(3)-(4)-(5)-(6)-(7) of Theorem DPTUZ1 hold even if there are
periodic critical points.
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Geometric coding tree

Consider an important example of distance expanding map, the shift to
the left, on the symbolic space ς : Σd → Σd , where Σd is the space of all
sequences (αn)n=0,1,... with αn ∈ {1, ..., d}, and ς is the left shift

ς((αn)) = (αn+1), with the metric ρΣ((αn), (α′n)) := 2− inf{k≥0 : αk 6=α′k}.

We shall use it for ‘coding’ our weak coarse expanding maps. (It itself is
not weak coarse expanding since it does not contain non-trivial
continuous paths.)

Given z ∈ X and curves γj : [0, 1]→W0, j = 1, . . . , d , joining z to
z j ∈ f −1(z), we define a graph T consisting of the set of vertices
f −n(z) ∈ X and edges f −n(γj) ⊂W0, n = 0, 1, ... and j = 1, ..., d , such
that denoting the edges in f −n(γj) by γn(α) for all α ∈ Σd the following
conditions hold

. . . b(α)

z1

z2
z3

z

γ1

γ2
γ3

γ0(α)
γ1(α)

γ2(α)

γ0(α) := γα0 , f ◦ γn(α) = γn−1(ς(α)), γn(α)(0) = γn−1(α)(1).

The vertices are defined as the ends of γn(α), denoted zn(α), zn−1(α).
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Coding

For every α ∈ Σd the subgraph composed of z , zn(α) and γn(α) for all
n ≥ 0 is called an infinite geometric branch and denoted by b(α).

Lemma

For each α ∈ Σd the sequence zn(α) converges exponentially to a point
π(α) ∈ X . The mapping π : Σd → X is Hölder continuous and onto.

In the proof one uses the fact [HP] that there exists N such that if
U,U ′ ∈ Un intersect, maybe outside X , then they belong to a common
Û ∈ Un−N . (We used it already checking conditions of Frink’s lemma.)
Hence for a chain of consecutively intersecting U(j) ∈ Un for j = 1, ..., k
given k, ρX (U(1),U(k)) is (exponentially) small for n large.
Hint: to prove the fact use Hausdorff and local compactess properties of
the topology on W1.
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No entropy drop

Let f : W1 →W0 be a finite branched cover with repellor X , let ρ be a
metric on X , and let ϕ : (X , ρ)→ R be a Hölder continuous potential.
Suppose as in Theorem DPTUZ1, that there are no periodic critical
(branching) points.

We say x is an ε-singular point if it lies within distance at most ε of a
branching point. Clearly for each non-periodic (branching) point the
times n so that f n(x) is ε close to it, are rare for each x ∈ X . Hence

Lemma

Suppose that no branching point is periodic. For any x ∈ X , denote as
Sn,x the number of cylinders in Σd of depth n which intersect π−1(x).
Then

lim
n→∞

1

n
log sup

x∈X
Sn,x = 0.

Corollary

Let µ be a ς-invariant measure on the symbolic space Σd , and let
ν = π?µ. Then hµ(σ) = hν(f ).
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Proof of Theorem DPTUZ1

For every Hölder φ : X → R for φ̂ = φ ◦ π, we find an equilibrium µφ̂.

Then π∗(µφ̂) is an equilibrium for (f , φ) on X since π∗ is onto and for all

µ and ν = π∗(µ) as in Corollary above

hµ(ς) +

∫
φ̂ dµ = hν(f ) +

∫
φ dν.

The latter yields the equality of the pressures P(f , φ) = P(ς, φ̂).
Uniqueness follows from the uniqueness of µφ̂. Theorem DPTUZ1, the

laws (2)-(5), follow from these laws on Σd and Hölder continuity of π.

Notice that the proof works for all φ topologically Hölder on X , that is
such that

varUnφ := sup
U∈Un

sup
x,y∈U∩X

|φ(x)− φ(y)|

converge to 0 exponentially fast.
This may happen to be weaker than Hölder if meshρX (Un) converge to 0
faster than exponentially.
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To prove (6) and (7) use a visual metric ρε, for which
f (B(ξ, re−ε)) = B(f (ξ), r) for all ξ ∈ X and r > 0 small enough.

Then, following [Bowen], for η = φ1 − φ2 −
∫

(φ1 − φ2) dµ we choose
x ∈ X so that O(x) = {f n(x)}n≥0 is dense in X , and prove it is Hölder
on O(x) hence extends to a Hölder continuous function on X .

σ2 = 0 implies there exists C > 0 such that |Snη(x)| < C for all x ∈ X
and n ∈ N. Hence Snη(x) = 0 for every x periodic, f n(x) = x .

Finally one uses periodic shadowing, by considering f k(x), f m(x) for
k < m, ρε(f

k(x), f m(x)) < δ, and pulling back f k(x) along
f m−1(x), ..., f m−k . Keeping repeating it one gets an exponential
convergence to a periodic limit y , ..., f m−k(y) = y , with Sm−kη(y) = 0.
Hence |η(f k(x))− η(f m(x))| ≤ Const δα.

FIGURE
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Periodic branching points – blowing up

Lemma (local model)

Let f : W1 →W0 ⊆ S2 be a weakly coarse expanding map, and let
p ∈ X be a fixed critical point. Then for any λ > 1 there exist
d ∈ Z \ {0}, a neighborhood U of p and a homeomorphism h : D→ U
such that f ◦ h = h ◦ g where g : Dλ−1 → D is defined as
g(re iθ) := λre idθ for any r ≤ 1, θ ∈ R.

It relies on

Lemma (On backward shrinking Jordan domain)

For every B a neighbourhood of p in W0, there exists a Jordan curve γ in
B \ {p} such that a component of f −1(γ) is a Jordan curve disjoint from
γ and separates γ from p.

Proof. Start with a Jordan domain p ∈ U ⊂ B and take N > 0 such that
the closure of UN := Compp f

−N(U) is contained in U, existing by

[Expansion] axiom. Consider V := Compp

(⋂N−1
n=0 Un

)
, where Compp

means the component containing p. Its slightly corrected boundary can
be our γ.
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Construction of the blowup.

Let C denote the (finite) set of all periodic critical points in X , and let

E =
⋃

n≥0 f
−n(C). We can define a space S̃ which is given by blowing up

every point of E to a circle.

Namely, for each q ∈ E let Sq be a copy of S1. The space S̃ is defined as
a set as

S̃ := (S2 \ E) t
⊔
q∈E

Sq.

The topology on S̃ will be defined shortly. Note there is a natural
projection map π : S̃ → S2 which sends each Sq to q. Let

W̃0 := π−1(W0), W̃1 := π−1(W1).

Definition of g . Let us now extend f to a map g : W̃1 → W̃0. In order
to do so, let us identify all Sq for q ∈ E with R/Z, and define
g : Sq → Sf (q) as g(θ) := dθ mod 1, where d is the local (signed)

degree of f at q. Finally, let us define g := f on W̃1 \
⋃

q∈E Sq.
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Topology

Let us choose one element from any periodic orbit in X containing
critical points, and let us call E∗ the union of such points. Moreover, for
each q ∈ E let m = m(q) be the minimal m ≥ 1 such that f m(q) ∈ E∗.
In particular for p ∈ E∗ this is the minimal period.
Let now p ∈ E∗. Then by Lemma on the local model, there exists a
neighborhood Up of p such that the map f m : Up → f m(Up) is
topologically conjugate to (r , θ) 7→ (λr , dθ mod 1) for some λ > 1.
We now fix some small values r0, ε > 0 and define for any θ0 ∈ [0, 2π)
the set

Vp,θ0 := π−1(h({0 < r < r0, θ0−ε < θ < θ0+ε}))∪{θ ∈ Sp : θ0−ε < θ < θ0+ε}.

For q ∈ E \ E∗ we define Vq,θ0 by taking pullbacks from E∗.
We now define the topology on W̃0 to be the topology generated by

{π−1(U) : U open in W0} ∪ {g−n(Vp,θ0 ) : n ≥ 0, p ∈ C, θ0 ∈ [0, 2π)}.

The continuity of π is immediate. Also Hausdorff property of the

topology on W̃0, compactness of the closure of W̃1 and local

connectivity of W̃0 are clear.
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The repellor Y and the [Irreducibility] axiom.

Denote as Y the repellor for g : W̃1 → W̃0. Clearly Y = π−1(X ). So, for
p ∈ E , Sp ⊂ Y . We prove that g is leo on Y .
For this, note that Sp, for say p f -fixed, is contained in the closure of the
lift of X \ {p}, and even is contained in the closure of Y \ π−1(E), using
the chart h in the local model and backward invariance of X .
For any V being a neighbourhood in Y of y ∈ Y \ π−1E there is n such
that gn(V ) = Y as lifting leo of f on X . Hence leo on the closure Y
holds. The irreducibility is proved.

Note that if X is not a neighbourhood of p in W0, e.g. there is a curve in
W0 \ X converging to p then we can blow up p so that Sp is not in Y .
For this we use a different model and can get g on Sp of degree d but
having an attracting periodic orbit.
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verifying the [Expansion] axiom

Let Ũ0 be the lift of U0 to a neighborhood of Y after blowing up
construction.
For each periodic branching p add to Ũ0 two neighborhoods of arcs in the
circle Sp = R/2πZ, V0 and V1 with 0 ≤ r < r? and

−π/4 < θ < π + π/4 and π − π/4 < θ < 2π + π/4

respectively, in the polar coordinates of the model. We replace by them
the lift of the set U0(p) ∈ U0.

Denote this cover by W̃0, and for each n by W̃n the cover given by
connected components of the sets g−n(U) for any U ∈ W̃0.

– Clearly
⋃

n W̃n provides a (countable) basis for the topology at all

points of Y . Hence there exists a cover of Y by the sets U(x , n) ∈ W̃n,
each being a subset of an element V of V for n ≥ N(V , x).

– By compactness and the Hausdorff property, we can find, for each
V ∈ V, a compact set V ∗ ⊂ V ∩Y so that the union of the V ∗ covers Y .
Now for an arbitrary V ∈ V one proves that over all x ∈ V ∗, the values
N(V , x) are uniformly bounded.
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– Case 1. Suppose that π(V ∗) ∩ π(V c) = ∅. Since π is continuous,
these sets are compact, so their Euclidean distance in S2 is positive, say
δV > 0. So if U ∈ Ũn intersects both V ∗ and V c , the Euclidean diameter
of π(U) is at least δV , so n is bounded from above by some NV ,
independent of x ∈ V ∗. In other words U(x , n) cannot intersect both V ∗

and V c for n > NV , hence is in V .

– Case 2. If π(V ∗) and π(V c) intersect, then there exists q ∈ E such
that both V ∗ and V c intersect Sq. In such a case we have the:

Claim. Among all q’s so that V ∗ and V c intersect Sq, the set of possible
m(q) is bounded.

Proof Otherwise, let (qn) ⊆ X be a sequence with m(qn)→∞, and
choose a convergent subsequence qn → q∗ using the metric ρ1 on X . Let
xn ∈ Sqn ∩ V ∗ and yn ∈ Sqn ∩ V c .
Now a simple analyses shows that both the cases q∗ /∈ E or q∗ ∈ E are
impossible, which ends the proof.
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Conclusion: Proof of DPTUZ2

For Hölder, hence topologically Hölder ϕ : X → R consider
ϕ̂ := ϕ ◦ π ◦ Π, where π : Y → X is the blowdown map and Π : Σd → Y
is the coding map. Notice that the composition is Hölder. Then consider
the unique equilibrium µϕ̂ on Σd and define µφ := Π ◦ π)∗(µϕ̂).

Then, as in the case without periodic critical points, for any Hölder
continuous observable ψ statistical laws for the sequence (ψ ◦ f n)n∈N
follow from the adequate statistical laws for the shift map with respect to
the sequence (ψ ◦ π ◦ Π ◦ ςn)n∈N.
Caution: we do not know/use that π is Hölder.

One should however additionally explain in the periodic critical case that
this µφ is indeed a unique equilibrium on X , since an entropy drop can
happen.
The measure µ = µϕ̂ is ergodic with respect to the shift ς, and positive
on non-empty open sets (as a consequence of the Gibbs property [Bowen].
Notice that Π∗(µ) is 0 on Sp and its gn-pre-images. Otherwise, by
ergodicity it would be supported on Sp (if it charged other preimages of
Sp it would charge preimages under iterates, therefore being infinite). So
µ would be 0 on the open nonempty set Σ \ Π−1(Sp), a contradiction.
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So π ◦ Π preserves the entropy of µ since Π does ”no entropy drop” and
π does it too as it is a measurable isomorphism
π : Y \

⊔
p∈E Sp → X \ E . Moreover, for µϕ = (π ◦ Π)∗(µ) we have∫

Σ
ϕ ◦ π ◦ Π dµ =

∫
X
ϕ dµϕ by definition. Hence

Ptop(f , ϕ) ≥ hµϕ(f )+

∫
X

ϕ dµϕ = hµ(σ)+

∫
Σ

ϕ◦π◦Π dµ = Ptop(ς, ϕ◦π◦Π).

So Ptop(f , ϕ) = Ptop(ς, ϕ ◦ π ◦ Π) . In particular, we have proved that

µX is an equilibrium state. Uniqueness follows easily.

Let us finish with

Proposition

The lift g : W̃1 → W̃0 resulting from blowing up periodic repelling
branching points of f : W1 →W0 ⊂ S2, can be continuously embedded
into the sphere S2, where Y becomes a repellor for the extended system.

More precisely, there exist a continuous embedding ι : W̃0 → S2, a
continuous map g ′ : S2 → S2 with g ′ ◦ ι = ι ◦ g and an open set W ′0
which contains ι(W̃0) so that ι(Y ) =

⋂
n≥0(g ′)−n(W ′0).

The components of S2 \ ι(Sp) not intersecting ι(W̃0), become basins of
attracting periodic orbits. If X = S2 then ι(Y ) is a Sierpiński carpet.
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