Thermodynamic formalism methods in one-dimensional real and complex dynamics

Feliks Przytycki Institute of Mathematics of the Polish Academy of Sciences

ICM 2018, Rio de Janeiro

1 – Introduction

o m tl

• Pioneer of statistical physics: Marian Smoluchowski 1872 – 1917 Vienna-Lvov-Cracow.

• Application of thermodynamic methods to dynamics: Yakov Sinai, David Ruelle, Rufus Bowen 1960/70 -ties.

Lemma (finite variational principle)

For given real numbers ϕ_1, \ldots, ϕ_d , the function

$$F(p_1, \dots, p_d) := \sum_{i=1}^d -p_i \log p_i + \sum_{\substack{i=1 \\ entropy}}^d p_i \phi_i$$

in the simplex $\{(p_1, \dots, p_d) : p_i \ge 0, \sum_{i=1}^d p_i = 1\}$ attains its maximum, called pressure equal to $P(\phi) = \log \sum_{i=1}^d e^{\phi_i}$, at the equilibrium

$$\hat{p}_j = e^{\phi_j} / \sum_{i=1}^d e^{\phi_i}.$$

Hint: $\sum_{i=1}^{d} -p_i \log p_i + \sum_{i=1}^{d} p_i \phi_i = \sum_{i=1}^{d} p_i \log(e^{\phi_i}/p_i).$

2/36

1 – Introduction: dynamics setting corresponding notions

 $f: X \to X$ a contin. map for a compact metric space (X, ρ) , $\phi: X \to \mathbb{R}$ a continuous function (*potential*).

Definition (variational topological pressure)

$$P_{\mathrm{var}}(f,\phi) := \sup_{\mu \in \mathcal{M}(f)} \left(h_{\mu}(f) + \int_{X} \phi \, d\mu
ight),$$

where $\mathcal{M}(f)$ is the set of all *f*-invariant Borel probability measures on X and $h_{\mu}(f)$ is measure-theoretical entropy.

Any measure where sup is attained is called *equilibrium state*.

Definition (topological pressure via separated sets)

$$\begin{split} P_{\mathrm{sep}}(f,\phi) &:= \lim_{\varepsilon \to 0} \overline{\lim}_{n \to \infty} \frac{1}{n} \log \left(\sup_{Y} \sum_{y \in Y} \exp S_n \phi(y) \right), \\ \text{supremum over all } Y \subset X \text{ such that for distinct } x, y \in Y, \\ \rho_n(x,y) &:= \max\{\rho(f^i(x), f^i(y)), 0 \leq i \leq n\} \geq \varepsilon. \end{split}$$

•
$$h_{\mu}(f) := \sup_{\mathscr{A}} \lim_{n \to \infty} \frac{1}{n+1} \sum_{A \in \mathscr{A}^n} -\mu(A) \log \mu(A)$$
,
supremum over finite partitions \mathscr{A} of X ,
 $\mathscr{A}^n := \bigvee_{j=0,...,n} f^{-j} \mathscr{A}$.

Theorem (variational principle: Ruelle, Walters, Misiurewicz, Denker, ...)

 $P_{\mathrm{var}}(f,\phi) = P_{\mathrm{sep}}(f,\phi).$

FP & M. Urbański "Conformal Fractals: Ergodic Theory Methods" Cambridge 2010.

Theorem (Gibbs measure – uniform case)

Let $f : X \to X$ be a distance expanding, topologically transitive continuous open map of a compact metric space X and $\phi : X \to \mathbb{R}$ be a Hölder continuous potential. Then, there exists exactly one $\mu_{\phi} \in \mathcal{M}(f, X)$, called Gibbs measure, s.t.

$$C < rac{\mu_\phi(f_x^{-n}(B(f^n(x),r_0)))}{\exp(S_n\phi(x)-nP)} < C^{-1},$$

called Gibbs property, where f_x^{-n} is the local branch of f^{-n} mapping $f^n(x)$ to x and $S_n\phi(x) := \sum_{j=0}^{n-1} \phi(f^j(x))$.

• μ_{ϕ} is the unique equilibrium state for ϕ . It is equivalent to the unique $\exp -(\phi - P)$ -conformal measure m_{ϕ} , that is an f-quasi-invariant measure with Jacobian $\exp -(\phi - P)$ for a constant P.

• $P = P(f, \phi) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{x \in f^{-n}(x_0)} \exp S_n \phi(x)$. This normalizing limit exists and is equal $P_{sep}(f, \phi)$ for every $x \in X$.

/ 36

2 – Introduction to dimension 1

Thermodynamic formalism is useful for studying properties of the underlying space X. In dimension 1, for f real of class $C^{1+\varepsilon}$ or f holomorphic (conformal) for an expanding repeller X, considering $\phi = \phi_t := -t \log |f'|$ for $t \in \mathbb{R}$, Gibbs property gives, as $\exp S_n(\phi_t) = |(f^n)'|^{-t}$,

$$\mu_{\phi_t}(f_x^{-n}(B(f^n(x), r_0))) \approx \exp(S_n\phi(x) - nP(\phi_t)) \approx$$

diam $f_x^{-n}(B(f^n(x), r_0))^t \exp(-nP(\phi_t)).$

The latter follows from a comparison of the diameter with the inverse of the absolute value of the derivative of f^n at x, due to bounded distortion.

When $t = t_0$ is a zero of the function $t \mapsto P(\phi_t)$, this gives

 $\mu_{\phi_{t_0}}(B) \approx (\operatorname{diam} B)^{t_0}$

for all small balls *B*, hence $HD(X) = t_0$. Moreover, the Hausdorff measure of *X* in this dimension is finite and nonzero.

A model application

Theorem (Bowen, Series, Sullivan)

For $f_c(z) := z^2 + c$ for an arbitrary complex number $c \neq 0$ sufficiently close to 0, the invariant Jordan curve J (Julia set for f_c) is fractal, i.e. has Hausdorff dimension bigger than 1.

If HD(J) = 1, then $0 < H_1(J) < \infty$ and $h = R_2^{-1} \circ R_1$ on S^1 is absolutely continuous. $g_i := R_i^{-1} \circ f_c \circ R_i$ for i = 1, 2 preserve length ℓ on S^1 and are ergodic. Hence h preserves ℓ so it is a rotation, identity for appropriate R_1, R_2 . Hence R_1 and R_2 glue together to a homography. Compare Mostov rigidity theorem.

7/36

complex case

In the complex case we consider f a rational mapping of degree at least 2 of the Riemann sphere $\overline{\mathbb{C}}$. We consider f acting on its Julia set K = J(f) (generalizing the $z^2 + c$ model).

Figure: Douady's zoo: rabbit $f(z) = z^2 - 0.123 + 0.745i$, dendrite $f(z) = z^2 + i$, basilica mated with rabbit $f(z) = \frac{z^2+c}{z^2-1}$ for $c = \frac{1+\sqrt{-3}}{2}$ with J(f) being the boundary of black and white

Definition (Real case, FP & Rivera-Letelier)

 $f \in C^2$ is called a *generalized multimodal map* if defined on a neighbourhood of a compact invariant set K, critical points are not infinitely flat, *bounded distortion* property for iterates holds, abbr. BD, f is topologically transitive and has positive topological entropy on K.

Also K is a maximal forward invariant subset of a finite union of pairwise disjoint closed intervals whose endpoints are in K.

This maximality corresponds to Darboux property. We write $(f, K) \in \mathscr{A}_{+}^{BD}$, where + marks positive entropy. In place of BD one can assume C^3 (and write $(f, K) \in \mathscr{A}_{+}^3$) and assume that all periodic orbits in K are hyperbolic repelling. Then changing f outside K allows to get $(f, K) \in \mathscr{A}_{+}^{BD}$. **Examples:** Basic sets in spectral decomposition via renormalizations (de Melo, van Strien).

9/36

3 – Hyperbolic potentials

Call $\phi : K \to \mathbb{R}$ satisfying $P(f, \phi) > \sup_{\nu \in \mathcal{M}(f)} \int \phi \, d\nu$ hyperbolic potential (Inoquio-Renteria, Rivera-Letelier: BBMS 2012). Equiv. $P(f, \phi) > \sup_{K} \frac{1}{n} S_{n} \phi$ for some n.

Theorem (complex and real: Denker, Urbański, FP, Haydn, Rivera-Letelier, Zdunik, Szostakiewicz, H. Li, Bruin, Todd)

. If ϕ is a Hölder continuous hyperbolic potential, then there exists a unique equilibrium state μ_{ϕ} . For every Hölder $u: K \to \mathbb{R}$, the Central Limit Theorem (CLT) and Law of Iterated Logarithm (LIL) for the sequence of random variables $u \circ f^n$ and μ_{ϕ} hold.

CLT follows from sufficiently fast convergence of iteration of transfer operator (spectral gap). LIL is proved via LIL for a return map (inducing) to a nice domain related to μ_{ϕ} (Mañé, Denker, Urbański) providing a Markov structure (Infinite Iterated Function System) avoiding critical points, satisf. BD. $\frac{990}{10/36}$

4 – Non-uniform hyperbolicity

a) CE. Collet-Eckmann condition. There exists $\lambda > 1, C > 0$

 $|(f^n)'(f(c))| \geq C\lambda^n.$

for all critical points $c \in K$ whose forward orbit is disjoint from Crit(f). Moreover there are no indifferent periodic orbits in K.

(b) CE2(z_0). Backward or second Collet-Eckmann condition at $z_0 \in K$. There exist $\lambda > 1$ and C > 0 such that for every $n \ge 1$ and every $w \in f^{-n}(z_0)$ (in a neighbourhood of K in the real case)

 $|(f^n)'(w)| \geq C\lambda^n.$

(c) TCE. Topological Collet-Eckmann condition (FP & S. Rohde, Fund. Math. 1998). There exist $M \ge 0, P \ge 1, r > 0$ such that for every $x \in K$ there exist increasing $n_j, j = 1, 2, ...$, such that $n_j \le P \cdot j$ and for each j and discs $B(\cdot)$ below understood in $\overline{\mathbb{C}}$ or \mathbb{R} .

$$\#\{0 \leq i < n_j : \operatorname{Comp}_{f^i(x)} f^{-(n_j-i)} B(f^{n_j}(x), r)) \cap \operatorname{Crit}(f) \neq \emptyset\} \leq M.$$

Each component of $f^{-n}(B)$ is called a pullback of B.

(d) ExpShrink. Exponential shrinking of components. There exist $\lambda > 1$ and r > 0 such that for every $x \in K$, every n > 0 and every connected component W_n of $f^{-n}(B(x, r))$ for the disc (interval) B(x, r) in $\overline{\mathbb{C}}$ (or \mathbb{R}), intersecting K

 $\operatorname{diam}(W_n) \leq \lambda^{-n}.$

(e) LyapHyp. Lyapunov hyperbolicity. There is λ > 1 such that the Lyapunov exponent χ(μ) := ∫_K log |f'| dμ of any ergodic measure μ ∈ M(f, K) satisfies χ(μ) ≥ log λ.
(f) UHP. uniform hyperbolicity on periodic orbits. There exists λ > 1 such that every periodic point p ∈ K of period k ≥ 1 satisfies

 $|(f^k)'(p)| \geq \lambda^k.$

Theorem (..., Keller, Nowicki, Sands, FP, Rohde, Rivera-Letelier, Graczyk, Smirnov)

Assume there are no indifferent periodic orbits in K. Then

1. The conditions (c)–(f) and else (b) for some z_0 are equivalent (in the real case under the assumption of weak isolation: any periodic orbit close to K must be in K).

2. CE implies (b)–(f).

3. If there is only one critical point in the Julia set in the complex case or if f is S-unimodal on K = I in the real case, then all conditions above are equivalent to each other.

4. TCE is topologically invariant; therefore all other conditions equivalent to it are topologically invariant.

For polynomials (b)-(f) are equivalent to $K = J(f) = \operatorname{Fr} \Omega_{\infty}(f)$, the basin of ∞ , being Hölder (Graczyk, Smirnov).

An order of proving the equivalences in Theorem above is, for z_0 safe,

 $CE2(z_0) \Rightarrow ExpShrink \Rightarrow LyapHyp \Rightarrow UHP \Rightarrow CE2(z_0)$

Separately one proves <code>ExpShrink</code> <code>TCE</code> using for \Rightarrow the following

Lemma (Denker, FP, Urbański, ETDS 1996)

$$\sum_{j=0}^n' - \log |f^j(x) - c| \leq Qn$$

for a constant Q > 0 every $c \in Crit(f)$, every $x \in K$ and every integer n > 0. Σ' means that we omit in the sum an index j of smallest distance $|f^j(x) - c|$. Assumed UHP one proves $CE2(z_0)$ for safe and hyperbolic z_0 by "shadowing".

Definition (safe)

We call $z \in K$ safe if $z \notin \bigcup_{j=1}^{\infty} (f^j(\operatorname{Crit}(f)))$ and for every $\epsilon > 0$ and all *n* large enough $B(z, \exp(-\epsilon n)) \cap \bigcup_{j=1}^n (f^j(\operatorname{Crit}(f))) = \emptyset.$

Notice that this definition implies that all points except at most a set of Hausdorff dimension 0, are safe.

5 – Geometric variational pressure and equilibrium states

For $\phi = \phi_t := -t \log |f'|$, the variational definition of pressure, here

$$P(t) := P_{\mathrm{var}}(f, \phi_t) = \sup_{\mu \in \mathcal{M}(f)} \left(h_{\mu}(f) - t \int_{\mathcal{K}} \log |f'| \, d\mu \right)$$

still makes sense by the integrability of log |f'|. Moreover $\int_{\mathcal{K}} \log |f'| d\mu = \chi(\mu) \ge 0$, for all ergodic μ even in presence of critical points where $\phi = \pm \infty$, [FP: PAMS 1993, Rivera-Letelier: arXiv 2012]. By this definition $t \mapsto P(t)$ is convex, monotone decreasing.

We usually assume t > 0 later on.

Figure: The geometric pressure: LyapHyp with $t_+ = \infty$, LyapHyp with $t_+ < \infty$, and non-LyapHyp.

P(t) is equal to several other quantities (Complex: FP TAMS 1999, FP & Rivera-Letelier & Smirnov ETDS 2004). E.g.

Definition (hyperbolic pressure)

$$\mathcal{P}_{ ext{hyp}}(t) := \sup_{X \in \mathscr{H}(f,\mathcal{K})} \mathcal{P}(f|_X, -t \log |f'|),$$

where $\mathscr{H}(f, K)$ is defined as the space of all compact forward inv., i.e. $f(X) \subset X$, expanding subsets of K, repellers in \mathbb{R} .

Definition (hyperbolic dimension)

$$\operatorname{HD}_{\operatorname{hyp}}({\mathcal K}) := \sup_{X \in \mathscr{H}(f,{\mathcal K})} \operatorname{HD}(X).$$

For expanding $f: X \to X$, $t_0(X) = HD(X)$. Passing to sup:

Proposition (Generalized Bowen's formula)

The first zero t_0 of $t \mapsto P_{hyp}(K, t)$ is equal to $HD_{hyp}(K)$.

It may happen $HD_{hyp}(J(f)) < HD(J(f)) = 2$ for f quadratic polynomials, Avila & Lyubich.

Theorem (FP & Rivera-Letelier)

1. Real case (arXiv 2014, to appear in Memoir of the AMS). Let $(f, K) \in \mathscr{A}^3_+$, f-periodic orbits in K be hyperbolic repelling. Then

• $t \mapsto P(t)$ is real analytic on an open interval (t_-, t_+) defined by $P(t) > \sup_{\nu \in \mathcal{M}(f)} -t \int \log |f'| d\nu$

• For each t in this interval there is a unique invariant equilibrium state μ_{ϕ_t} . It is ergodic and absolutely continuous with respect to an adequate conformal measure m_{ϕ_t} with $d\mu_{\phi_t}/dm_{\phi_t} \geq \text{Const} > 0$ a.e.

• If furthermore f is topologically exact on K (that is for every V an open subset of K there exists $n \ge 0$ such that $f^n(V) = K$), then this measure is mixing, has expon. decay of corr. and satisfies CLT for Lipschitz gauge functions.

This generalizes results by Bruin, Iommi, Pesin, Senti, Todd.

<ロ> <同> <同> < 回> < 回>

Theorem (FP & Rivera-Letelier)

2. Complex case (Comm. Mat. Phys. 2011). The assertion is the same. One assumes a very weak expansion: the existence of arbitrarily small nice, or pleasant, couples and hyperbolicity away from critical points.

Remark. For real f satisfying LyapHyp and $K = \hat{I}$, we have the unique zero of pressure $t_0 = 1$ and for $-\log |f'|$ we conclude that a unique equilibrium state exists which is a.c.i.m. .

In general it holds assumed e.g. $|(f^n)'(f(c))| \to \infty$ for all $c \in \operatorname{Crit}(f)$ (Bruin & Rivera-Letelier & Shen & van Strien: Inv. math 2008). For $t > t_+$, LyapHyp, equilibria do not exist (Rivera-Letelier & Inoquio 2012).

Proofs use inducing (Lai-Sang Young towers). For a different proof, the real case, see a recent preprint by Dobbs and Todd.

 $P_{var}(t)$ allows to study dimension spectrum for Lyapunov exponent via Legendre transformation, proving in particular $HD(\{x \in K : \chi(x) = \alpha\}) = \frac{1}{|\alpha|} \inf_{t \in \mathbb{R}} (P(t) + \alpha t)$. **Proof of** \geq . Given α consider t where inf is attained. The tangent to P(t) at t is parallel to $-\alpha t$ and for μ_t the equilibrium, it is $h_{\mu_t}(f) - t\chi(\mu_t)$. So the infimum is $h_{\mu_t}(f)$, see Fig. (By variational definition P(t) and h_{μ} are mutual Legendre type transforms.) Dividing by α gives \geq using Mañé's equality $HD(\mu) = h_{\mu}(f)/\chi(\mu)$.

Proof of \leq uses conformal measures.

Use of the Legendre transform of P(t) allows also to give formulas for HD of irregular sets

 $\mathrm{HD}(\{\underline{\chi}(\mathbf{x}) = \alpha, \overline{\chi}(\mathbf{x}) = \beta\})$

for $\beta > 0$ [Gelfert & FP & Rams: Math. Ann. 2010, ETDS 2016].

In analogy to $\chi(\mu) \ge 0$ one has:

Theorem (Levin & FP & Shen: Inv.math. 2016))

If for a rational function $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ there is only one critical point c in J(f) and no parabolic periodic orbits, then $\underline{\chi}(f(c)) \ge 0$.

For S-unimodal maps of interval this was proved much earlier by Nowicki and Sands.

6 - Other definitions of geometric pressure

Definition (tree pressure)

For every $z \in K$ and $t \in \mathbb{R}$ define $P_{\text{tree}}(z, t) = \limsup_{n \to \infty} \frac{1}{n} \log \sum_{f^n(x)=z, x \in K} |(f^n)'(x)|^{-t}.$

Theorem

 $P_{\rm tree}(z,t)$ does not depend on z for z safe.

• In the complex case to prove $P_{\text{tree}}(z_1, t) = P_{\text{tree}}(z_2, t)$ one joins z_1 to z_2 with a curve not fast accumulated by critical trajectories, FP: TAMS 1999, FP & Rivera-Letelier & Smirnov: ETDS 2004.

• In the real case there is no room for such curves. Instead, one relies on topological transitivity, FP & Rivera-Letelier: arXiv 2014 & Memoir AMS 2019, FP: Monatsh. Math. 2018.

• For $\phi = -t \log |f'|$ pressure via separated sets does not make sense. Indeed, in presence of critical points for f, it is equal to $+\infty$. So it is replaced by P_{tree} .

• One can consider however spanning geometric pressure $P_{\text{span}}(t)$ using (n, ε) -spanning sets and infimum.

Assumed weak backward Lyapunov stability it is indeed equal to P(t) in the complex case (FP: Monatsh. Math. 2018).

• This is not so in the real case (where wbls always holds if all periodic orbits hyperbolic repelling). It happens $P_{\text{span}}(t) = \infty$ if some x with big $|(f^n)'(x)|^{-1}$ is well ρ_n -isolated.

Definition (weak backward Lyapunov stability, wbls)

f is weakly backward Lyapunov stable if for every $\delta > 0$ and $\varepsilon > 0$ for all n large enough and every disc $B = B(x, \exp - \delta n)$ centered at $x \in K$, for every $0 \le j \le n$ and every component V of $f^{-j}(B)$ intersecting K, it holds that diam $V \le \varepsilon$.

Question. Does whis hold for all rational maps?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

7 – Boundary dichotomy

• Let $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be a rational map with deg $(f) \ge 2$. and let $\Omega = \Omega_p(f)$ be a simply connected immediate basin of attraction to a fixed point p. Let $R : \mathbb{D} \to \Omega$ be a Riemann map R(0) = p and $g : \mathbb{D} \to \mathbb{D}$ defined by $g := R^{-1} \circ f \circ R$, extended conformally beyond $\operatorname{Fr} \Omega$ (Schwarz symmetry), thus expanding on $\partial \mathbb{D}$.

• Consider harmonic measure $\omega = \overline{R}_*(I)$, where I is normalized length measure on $\partial \mathbb{D}$ and \overline{R} is radial limit, defined I-a.e. I is g-invariant, hence ω is f-invariant. Denote by H_1 Hausdorff measure in dimension 1.

Theorem (FP, Urbański, Zdunik: 1985 – 2006)

For f, Ω as above, $HD(\omega) = 1$. One of two cases holds: 1) $\omega \perp H_1$, which implies $HD_{hyp}(Fr \Omega) > 1$; 2) $\omega \ll H_1$ and f is a finite Blaschke product or a two-to-one holomorphic factor of a Blaschke product in some holomorphic coordinates on $\overline{\mathbb{C}}$. Consider $\psi := \log |g'| - \log |f'| \circ \overline{R}$. Notice that $\int_{\partial \mathbb{D}} \psi \, dl = 0$, hence $HD(\omega) = 1$.

The latter was proved in 1985 by Makarov without assuming existence of f.

Consider the asymptotic variance $\sigma^2 = \sigma_{\nu}^2(\psi) := \lim_{n \to \infty} \frac{1}{n} \int_{\partial \mathbb{D}} (S_n \psi)^2 \, dl.$ Then $\omega \perp H_1$ is equivalent to $\sigma^2 > 0$ and equivalent to ψ not being cohomologous to 0 (not of the form $u \circ f - u$).

Theorem (LIL-refined-HD for harmonic measure, FP, Urbański, Zdunik: Ann. Math. 1989, Studia Math. 1991)

For f, Ω with $\sigma^2 > 0$, there exists $c(\Omega) > 0$, such that for $\alpha_c(r) := r \exp(c\sqrt{\log 1/r}\log\log\log 1/r)$ i) $\omega \perp H_{\alpha_c}$ for the gauge function α_c , for all $0 < c < c(\Omega)$; ii) $\mu \ll H_{\alpha_c}$ for all $c > c_1(\Omega)$.

This theorem applies also e.g. to snowflake-type Ω 's,

Proofs.

We can find X with $HD(X) \ge HD(\omega) - \epsilon$ by Katok method and using $HD = h/\chi$. But we can do better:

 $\sigma^2 > 0$ yields by CLT large fluctuations of the sums $\sum_{j=0}^{n-1} \psi \circ \varsigma^j$ from 0, allowing to find expanding X with $HD(X) > HD(\omega)$. One builds an iterated function system, for which X is the limit set. A special care is needed to get $X \subset Fr \Omega$.

Substituting in LIL $n \sim (\log 1/r_n)/\chi(\omega)$ for $r_n = |(f^n)'(x)|^{-n}$, comparing $\log |(g^n)'| - \log |(f^n)'| \circ \overline{R}$ with $\sqrt{2\sigma^2 n \log \log n}$ for a sequence of *n*'s, we get

Lemma (Refined Volume Lemma)

For ω -a.e. x

$$\limsup_{n \to \infty} \frac{\omega(B(x, r_n))}{\alpha_c(r_n)} = \begin{cases} \infty, & \text{for } 0 < c < c(\omega), \\ 0, & \text{for } c > c(\omega). \end{cases}$$

Using $R = f^{-n} \circ R \circ g^n$ one obtains

Theorem (radial growth)

For Lebesgue a.e. $\zeta \in \partial \mathbb{D}$

$$G^{+}(\zeta) := \limsup_{r \nearrow 1} \frac{\log |R'(r\zeta)|}{\sqrt{\log(1/1 - r)\log\log\log(1/1 - r)}} = c(\Omega).$$

Similarly $G^{-}(\zeta) := \liminf \dots = -c(\Omega).$

Above theorems hold for every connected, simply connected open $\Omega \subset \mathbb{C}$, different from \mathbb{C} , without existence of f. Of course one should add ess sup over $\zeta \in \partial \mathbb{D}$ and over $z \in \operatorname{Fr} \Omega$ in Refined Volume Lemma and reformulate the case i). There is a universal Makarov's upper bound $C_{\mathrm{M}} < \infty$ for all $c(\Omega)$, $C_{\mathrm{M}} \leq 1.2326$ (Hedenmalm, Kayumov: PAMS 2007). In 1989 I gave a weaker estimate.

Geometric coding trees, g.c.t.

• Above theorems hold in an abstract setting of a geometric coding tree in U for $f: U \to \overline{\mathbb{C}}$, $f(U) \supset U$ proper, giving a coding $\pi: \Sigma^d \to \Lambda$ to the limit set Λ (in place of $\overline{R}: \partial \mathbb{D} \to \operatorname{Fr} \Omega$), provided f extends holomorphically beyond $\operatorname{cl} \Lambda$ called then a *quasi-repeller*.

Curves $\gamma^{j} : [0,1] \rightarrow f(U), \ j = 1, \dots, d$, join z to z^{j} $\gamma_{0}(\alpha) := \gamma^{\alpha_{0}},$ $f \circ \gamma_{n}(\alpha) = \gamma_{n-1}(\varsigma(\alpha)),$ $\gamma_{n}(\alpha)(0) = \gamma_{n-1}(\alpha)(1).$

32 / 36

イロト イポト イヨト イヨト

• For a Hölder potential $\phi : \Sigma^d \to \mathbb{R}$ (in place of $-\log |g'|$) and Gibbs measure μ_{ϕ} one gets a dichotomy for $\mu := \pi_*(\mu_{\phi})$ on Λ .

For a constant potential μ = μ_{max} a measure of maximal entropy on Julia set J(f) for f : C → C rational. Then
1) If σ² > 0 then HD_{hyp}(J(f)) > HD(μ_{max}).
2) If σ² = 0 then for each x, y ∈ J(f) not postcritical, if z = fⁿ(x) = f^m(y) for some positive integers n, m, the orders of criticality of fⁿ at x and f^m at y coincide. In particular all critical points in J(f) are pre-periodic, f is postcritically finite with parabolic orbifold, in particular z^d, Chebyshev or some Lattès maps, (Zdunik, Inv. math. 1990).

• In the Ω version it is sufficient to assume f is defined only in a neighbourhood of $\partial \Omega$ repelling on the side of Ω , called RB-domain.

• This applies to f polynomial and simply connected $\Omega = \Omega_{\infty}$ giving again the dichotomy on $\operatorname{Fr} \Omega$.

integral mean spectrum

• For a simply connected domain $\Omega \subset \mathbb{C}$ one considers the *integral means spectrum*:

$$eta_\Omega(t) := \limsup_{r
earrow 1} rac{1}{|\log(1-r)|} \log \int_{\zeta \in \partial \mathbb{D}} |R'(r\zeta)|^t |d\zeta|.$$

This, in presence of f, e.g. for an RB-domain Ω and for $\phi = -\log |f'|$ for $g(z) = z^d$, e.g. Ω being a simply connected basin of ∞ for a polynomial of degree d, satisfies $\beta_{\Omega}(t) = t - 1 + \frac{P(t\phi)}{\log d}$. (Makarov, FP & Rohde)

One considers

$$\sigma^{2}(\log R') := \limsup_{r \nearrow 1} \frac{\int_{\partial \mathbb{D}} |\log R'(t\zeta)|^{2} |d\zeta|}{-2\pi \log(1-r)|}.$$

It holds $\sigma^2(\log R') = 2\frac{d^2\beta_{\Omega}(t)}{dt^2}|_{t=0}$ (O. lvrii). It is related to the Weil-Petersson metric (McMullen).

Recall $\sigma_{\mu}^{2}(t\phi) = \frac{d^{2}P(f,t\phi)}{dt^{2}}$ for μ Gibbs in expanding case, Ruelle: Thermodyn. Formalism, FP & Urbański: Conformal Fractals.

8. Accessibility

Theorem (Douady-Eremenko-Levin-Petersen, accessibility of periodic sources; FP, the general case: Fund. Math. 1994)

Let Λ be a limit set for a g.c.t. \mathscr{T} for holomorphic $f : U \to \overline{\mathbb{C}}$. Assume diam $(\gamma_n(\alpha)) \to 0$, as $n \to \infty$, uniform shrinking with respect to $\alpha \in \Sigma^d$. Then every good $q \in cl \Lambda$ is a limit of a convergent branch $b(\alpha)$, i.e. $q \in \Lambda$. In particular, this holds for every q with $\chi(q) > 0$ satisfying a local backward invariance.

Corollary (lifting of measure, FP 1994 & Proc. ICM18)

Every non-atomic hyperbolic probability measure μ , i.e. $\chi(\mu) > 0$, on $\operatorname{cl} \Lambda$, is the π_* image of a probability ς -invariant measure ν on Σ^d , assumed uniform shrinking, \mathscr{T} has no self-intersections and μ -a.e. local backward invariance of U. In part. a lift ν exists for every completely invariant RB-domain, e.g. for μ on $\operatorname{Fr} \Omega_{\infty}$ for f polynomial.

THANK YOU FOR YOUR ATTENTION

