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1 – Introduction

• Pioneer of statistical physics: Marian Smoluchowski 1872 –
1917 Vienna-Lvov-Cracow.
• Application of thermodynamic methods to dynamics: Yakov
Sinai, David Ruelle, Rufus Bowen 1960/70 -ties.

Lemma (finite variational principle)

For given real numbers φ1, . . . , φd , the function

F (p1, . . . pd) :=
∑d

i=1−pi log pi
entropy

+
∑d

i=1 piφi
average potential

on the simplex {(p1, . . . , pd) : pi ≥ 0,
∑d

i=1 pi = 1} attains its

maximum, called pressure equal to P(φ) = log
∑d

i=1 e
φi , at

the equilibrium
p̂j = eφj/

∑d
i=1 e

φi .

Hint:
∑d

i=1−pi log pi +
∑d

i=1 piφi =
∑d

i=1 pi log(eφi/pi).
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1 – Introduction: dynamics setting corresponding

notions
f : X → X a contin. map for a compact metric space (X , ρ),
φ : X → R a continuous function (potential).

Definition (variational topological pressure)

Pvar(f , φ) := sup
µ∈M(f )

(
hµ(f ) +

∫
X

φ dµ

)
,

where M(f ) is the set of all f -invariant Borel probability
measures on X and hµ(f ) is measure-theoretical entropy.

Any measure where sup is attained is called equilibrium state.

Definition (topological pressure via separated sets)

Psep(f , φ) := limε→0 limn→∞
1
n

log
(

supY

∑
y∈Y exp Snφ(y)

)
,

supremum over all Y ⊂ X such that for distinct x , y ∈ Y ,
ρn(x , y) := max{ρ(f i(x), f i(y)), 0 ≤ i ≤ n} ≥ ε.
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• hµ(f ) := supA limn→∞
1

n+1

∑
A∈A n −µ(A) log µ(A),

supremum over finite partitions A of X ,
A n :=

∨
j=0,...,n f

−jA .

Theorem (variational principle: Ruelle, Walters, Misiurewicz,
Denker, ...)

Pvar(f , φ) = Psep(f , φ).

FP & M. Urbański ”Conformal Fractals: Ergodic Theory
Methods” Cambridge 2010.
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Theorem (Gibbs measure – uniform case)

Let f : X → X be a distance expanding, topologically
transitive continuous open map of a compact metric space X
and φ : X → R be a Hölder continuous potential. Then, there
exists exactly one µφ ∈M(f ,X ), called Gibbs measure, s.t.

C <
µφ(f −nx (B(f n(x), r0))

exp(Snφ(x)− nP)
< C−1,

called Gibbs property, where f −nx is the local branch of f −n

mapping f n(x) to x and Snφ(x) :=
∑n−1

j=0 φ(f j(x)).

• µφ is the unique equilibrium state for φ. It is equivalent to
the unique exp−(φ− P)-conformal measure mφ, that is an
f -quasi-invariant measure with Jacobian exp−(φ− P) for a
constant P .

• P = P(f , φ) := limn→∞
1
n

log
∑

x∈f −n(x0) exp Snφ(x). This

normalizing limit exists and is equal Psep(f , φ) for every x ∈ X .
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2 – Introduction to dimension 1

Thermodynamic formalism is useful for studying properties of
the underlying space X . In dimension 1, for f real of class
C 1+ε or f holomorphic (conformal) for an expanding repeller
X , considering φ = φt := −t log |f ′| for t ∈ R, Gibbs property
gives, as exp Sn(φt) = |(f n)′|−t ,

µφt (f
−n
x (B(f n(x), r0))) ≈ exp(Snφ(x)− nP(φt)) ≈

diam f −nx (B(f n(x), r0))t exp−nP(φt).

The latter follows from a comparison of the diameter with the
inverse of the absolute value of the derivative of f n at x , due
to bounded distortion.

When t = t0 is a zero of the function t 7→ P(φt), this gives

µφt0 (B) ≈ (diamB)t0

for all small balls B , hence HD(X ) = t0. Moreover, the
Hausdorff measure of X in this dimension is finite and nonzero. 6 / 36



A model application

Theorem (Bowen, Series, Sullivan)

For fc(z) := z2 + c for an arbitrary complex number c 6= 0
sufficiently close to 0, the invariant Jordan curve J (Julia set
for fc) is fractal, i.e. has Hausdorff dimension bigger than 1.

h

R2

R1

If HD(J) = 1, then 0 < H1(J) <∞ and h = R−1
2 ◦R1 on S1 is

absolutely continuous. gi := R−1
i ◦ fc ◦ Ri for i = 1, 2 preserve

length ` on S1 and are ergodic. Hence h preserves ` so it is a
rotation, identity for appropriate R1,R2. Hence R1 and R2 glue
together to a homography. Compare Mostov rigidity theorem. 7 / 36



complex case

In the complex case we consider f a rational mapping of degree
at least 2 of the Riemann sphere C. We consider f acting on
its Julia set K = J(f ) ( generalizing the z2 + c model).

Figure: Douady’s zoo: rabbit f (z) = z2 − 0.123 + 0.745i , dendrite

f (z) = z2 + i , basilica mated with rabbit f (z) = z2+c
z2−1

for

c = 1+
√
−3

2 with J(f ) being the boundary of black and white
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real case

Definition ( Real case, FP & Rivera-Letelier)

f ∈ C 2 is called a generalized multimodal map if defined on a
neighbourhood of a compact invariant set K , critical points
are not infinitely flat, bounded distortion property for iterates
holds, abbr. BD, f is topologically transitive and has positive
topological entropy on K .
Also K is a maximal forward invariant subset of a finite union
of pairwise disjoint closed intervals whose endpoints are in K .

This maximality corresponds to Darboux property. We write
(f ,K ) ∈ A BD

+ , where + marks positive entropy. In place of
BD one can assume C 3 (and write (f ,K ) ∈ A 3

+) and assume
that all periodic orbits in K are hyperbolic repelling. Then
changing f outside K allows to get (f ,K ) ∈ A BD

+ .

Examples: Basic sets in spectral decomposition via
renormalizations (de Melo, van Strien).
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3 – Hyperbolic potentials
Call φ : K → R satisfying P(f , φ) > supν∈M(f )

∫
φ dν

hyperbolic potential (Inoquio-Renteria, Rivera-Letelier: BBMS
2012). Equiv. P(f , φ) > supK

1
n
Snφ for some n.

Theorem (complex and real: Denker, Urbański, FP, Haydn,
Rivera-Letelier, Zdunik, Szostakiewicz, H. Li, Bruin, Todd)

. If φ is a Hölder continuous hyperbolic potential, then there
exists a unique equilibrium state µφ. For every Hölder
u : K → R, the Central Limit Theorem (CLT) and Law of
Iterated Logarithm (LIL) for the sequence of random variables
u ◦ f n and µφ hold.

CLT follows from sufficiently fast convergence of iteration of
transfer operator (spectral gap). LIL is proved via LIL for a
return map (inducing) to a nice domain related to µφ (Mañé,
Denker, Urbański) providing a Markov structure (Infinite
Iterated Function System) avoiding critical points, satisf. BD. 10 / 36



4 – Non-uniform hyperbolicity

a) CE. Collet-Eckmann condition. There exists λ > 1,C > 0

|(f n)′(f (c))| ≥ Cλn.

for all critical points c ∈ K whose forward orbit is disjoint from
Crit(f ). Moreover there are no indifferent periodic orbits in K .

(b) CE2(z0). Backward or second Collet-Eckmann condition
at z0 ∈ K . There exist λ > 1 and C > 0 such that for every
n ≥ 1 and every w ∈ f −n(z0) (in a neighbourhood of K in the
real case)

|(f n)′(w)| ≥ Cλn.
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(c) TCE. Topological Collet-Eckmann condition (FP & S.
Rohde, Fund. Math. 1998).
There exist M ≥ 0,P ≥ 1, r > 0 such that for every x ∈ K
there exist increasing nj , j = 1, 2, . . . , such that nj ≤ P · j and
for each j and discs B(·) below understood in C or R.

#{0 ≤ i < nj : Compf i (x) f
−(nj−i)B(f nj (x), r))∩Crit(f ) 6= ∅} ≤ M .

—————–

Each component of f −n(B) is called a pullback of B .
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(d) ExpShrink. Exponential shrinking of components. There
exist λ > 1 and r > 0 such that for every x ∈ K , every n > 0
and every connected component Wn of f −n(B(x , r)) for the
disc (interval) B(x , r) in C (or R), intersecting K

diam(Wn) ≤ λ−n.

(e) LyapHyp. Lyapunov hyperbolicity. There is λ > 1 such
that the Lyapunov exponent χ(µ) :=

∫
K

log |f ′| dµ of any
ergodic measure µ ∈M(f ,K ) satisfies χ(µ) ≥ log λ.

(f) UHP. uniform hyperbolicity on periodic orbits. There
exists λ > 1 such that every periodic point p ∈ K of period
k ≥ 1 satisfies

|(f k)′(p)| ≥ λk .
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Theorem (..., Keller, Nowicki, Sands, FP, Rohde,
Rivera-Letelier, Graczyk, Smirnov)

Assume there are no indifferent periodic orbits in K . Then

1. The conditions (c)–(f) and else (b) for some z0 are
equivalent (in the real case under the assumption of weak
isolation: any periodic orbit close to K must be in K ).

2. CE implies (b)–(f).

3. If there is only one critical point in the Julia set in the
complex case or if f is S-unimodal on K = I in the real case,
then all conditions above are equivalent to each other.

4. TCE is topologically invariant; therefore all other conditions
equivalent to it are topologically invariant.

For polynomials (b)-(f) are equivalent to
K = J(f ) = FrΩ∞(f ), the basin of ∞, being Hölder
(Graczyk, Smirnov).
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An order of proving the equivalences in Theorem above is, for
z0 safe,
CE2(z0)⇒ExpShrink⇒LyapHyp⇒UHP⇒CE2(z0)

Separately one proves ExpShrink⇔TCE using for ⇒ the
following

Lemma (Denker, FP, Urbański, ETDS 1996)

n∑
j=0

′ − log |f j(x)− c | ≤ Qn

for a constant Q > 0 every c ∈ Crit(f ), every x ∈ K and
every integer n > 0. Σ′ means that we omit in the sum an
index j of smallest distance |f j(x)− c |.
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Assumed UHP one proves CE2(z0) for safe and hyperbolic z0

by “shadowing”.

R

f nκ

f n
f N1

f N2

f N3

exp−εn

Definition (safe)

We call z ∈ K safe if z /∈ ⋃∞j=1(f j(Crit(f ))) and for every
ε > 0 and all n large enough
B(z , exp(−εn)) ∩⋃n

j=1(f j(Crit(f ))) = ∅.

Notice that this definition implies that all points except at
most a set of Hausdorff dimension 0, are safe.
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5 – Geometric variational pressure and equilibrium

states

For φ = φt := −t log |f ′|, the variational definition of pressure,
here

P(t) := Pvar(f , φt) = sup
µ∈M(f )

(
hµ(f )− t

∫
K

log |f ′| dµ
)

still makes sense by the integrability of log |f ′|. Moreover∫
K

log |f ′| dµ = χ(µ) ≥ 0,
for all ergodic µ even in presence of critical points where
φ = ±∞, [FP: PAMS 1993, Rivera-Letelier: arXiv 2012]. By
this definition t 7→ P(t) is convex, monotone decreasing.

We usually assume t > 0 later on.
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t
t0

P(t)

−χsup

−χinf

t
t0 t+

P(t)

−χsup

−χinf

t
t0 = t+

P(t)

−χsup

−χinf

Figure: The geometric pressure: LyapHyp with t+ =∞,
LyapHyp with t+ <∞, and non-LyapHyp.
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P(t) is equal to several other quantities (Complex: FP TAMS
1999, FP & Rivera-Letelier & Smirnov ETDS 2004). E.g.

Definition (hyperbolic pressure)

Phyp(t) := supX∈H (f ,K) P(f |X ,−t log |f ′|),
where H (f ,K ) is defined as the space of all compact forward
inv., i.e. f (X ) ⊂ X , expanding subsets of K , repellers in R.

Definition (hyperbolic dimension)

HDhyp(K ) := sup
X∈H (f ,K)

HD(X ).

For expanding f : X → X , t0(X ) = HD(X ). Passing to sup:

Proposition (Generalized Bowen’s formula)

The first zero t0 of t 7→ Phyp(K , t) is equal to HDhyp(K ).

It may happen HDhyp(J(f )) < HD(J(f )) = 2 for f quadratic
polynomials, Avila & Lyubich. 19 / 36



Theorem (FP & Rivera-Letelier)

1. Real case (arXiv 2014, to appear in Memoir of the AMS).
Let (f ,K ) ∈ A 3

+, f -periodic orbits in K be hyperbolic
repelling. Then

• t 7→ P(t) is real analytic on an open interval (t−, t+) defined
by P(t) > supν∈M(f )−t

∫
log |f ′| dν

• For each t in this interval there is a unique invariant
equilibrium state µφt . It is ergodic and absolutely continuous
with respect to an adequate conformal measure mφt with
dµφt/dmφt ≥ Const > 0 a.e.

• If furthermore f is topologically exact on K (that is for every
V an open subset of K there exists n ≥ 0 such that
f n(V ) = K ), then this measure is mixing, has expon. decay of
corr. and satisfies CLT for Lipschitz gauge functions.

This generalizes results by Bruin, Iommi, Pesin, Senti, Todd.
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Theorem (FP & Rivera-Letelier)

2. Complex case (Comm. Mat. Phys. 2011). The assertion is
the same. One assumes a very weak expansion: the existence
of arbitrarily small nice, or pleasant, couples and hyperbolicity
away from critical points.

Remark. For real f satisfying LyapHyp and K = Î , we have
the unique zero of pressure t0 = 1 and for − log |f ′| we
conclude that a unique equilibrium state exists which is
a.c.i.m. .

In general it holds assumed e.g. |(f n)′(f (c))| → ∞ for all
c ∈ Crit(f ) (Bruin & Rivera-Letelier & Shen & van Strien:
Inv. math 2008). For t > t+, LyapHyp, equilibria do not exist
(Rivera-Letelier & Inoquio 2012).

Proofs use inducing (Lai-Sang Young towers). For a different
proof, the real case, see a recent preprint by Dobbs and Todd.
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Pvar(t) allows to study dimension spectrum for Lyapunov
exponent via Legendre transformation, proving in particular

HD({x ∈ K : χ(x) = α}) = 1
|α| inft∈R (P(t) + αt) .

Proof of ≥. Given α consider t where inf is attained. The
tangent to P(t) at t is parallel to −αt and for µt the
equilibrium, it is hµt (f )− tχ(µt). So the infimum is hµt (f ),
see Fig. (By variational definition P(t) and hµ are mutual
Legendre type transforms.) Dividing by α gives ≥ using
Mañé’s equality HD(µ) = hµ(f )/χ(µ).

t

P(t)

HD

hµtα
(f )

−χ(µtα) = −α

Figure: Legendre transform
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Proof of ≤ uses conformal measures.

Use of the Legendre transform of P(t) allows also to give
formulas for HD of irregular sets

HD({χ(x) = α, χ(x) = β})
for β > 0 [Gelfert & FP & Rams: Math. Ann. 2010, ETDS
2016].

In analogy to χ(µ) ≥ 0 one has:

Theorem (Levin & FP & Shen: Inv.math. 2016))

If for a rational function f : C→ C there is only one critical
point c in J(f ) and no parabolic periodic orbits, then
χ(f (c)) ≥ 0.

For S-unimodal maps of interval this was proved much earlier
by Nowicki and Sands.
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6 – Other definitions of geometric pressure

Definition (tree pressure)

For every z ∈ K and t ∈ R define
Ptree(z , t) = lim supn→∞

1
n

log
∑

f n(x)=z, x∈K |(f n)′(x)|−t .

Theorem

Ptree(z , t) does not depend on z for z safe.

• In the complex case to prove Ptree(z1, t) = Ptree(z2, t) one
joins z1 to z2 with a curve not fast accumulated by critical
trajectories, FP: TAMS 1999, FP & Rivera-Letelier &
Smirnov: ETDS 2004.

• In the real case there is no room for such curves. Instead,
one relies on topological transitivity, FP & Rivera-Letelier:
arXiv 2014 & Memoir AMS 2019, FP: Monatsh. Math. 2018.
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• For φ = −t log |f ′| pressure via separated sets does not
make sense. Indeed, in presence of critical points for f , it is
equal to +∞. So it is replaced by Ptree.

• One can consider however spanning geometric pressure
Pspan(t) using (n, ε)-spanning sets and infimum.
Assumed weak backward Lyapunov stability it is indeed equal
to P(t) in the complex case (FP: Monatsh. Math. 2018).
• This is not so in the real case (where wbls always holds if all
periodic orbits hyperbolic repelling). It happens Pspan(t) =∞
if some x with big |(f n)′(x)|−1 is well ρn-isolated.

Definition (weak backward Lyapunov stability, wbls)

f is weakly backward Lyapunov stable if for every δ > 0 and
ε > 0 for all n large enough and every disc B = B(x , exp−δn)
centered at x ∈ K , for every 0 ≤ j ≤ n and every component
V of f −j(B) intersecting K , it holds that diamV ≤ ε.

Question. Does wbls hold for all rational maps?
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0 f 2(c) f (c)c 1

K ⊂ Î1 ∪ Î2
Î1 Î2

f ni

gaps
f 2
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7 – Boundary dichotomy
• Let f : C→ C be a rational map with deg(f ) ≥ 2. and let
Ω = Ωp(f ) be a simply connected immediate basin of
attraction to a fixed point p. Let R : D→ Ω be a Riemann
map R(0) = p and g : D→ D defined by g := R−1 ◦ f ◦ R ,
extended conformaly beyond FrΩ (Schwarz symmetry), thus
expanding on ∂D.

• Consider harmonic measure ω = R∗(l), where l is
normalized length measure on ∂D and R is radial limit, defined
l -a.e. l is g -invariant, hence ω is f -invariant. Denote by H1

Hausdorff measure in dimension 1.

R

R∗
l ω

D Ω

g = R−1 ◦ f ◦ R f

p
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Theorem (FP, Urbański, Zdunik: 1985 – 2006)

For f ,Ω as above, HD(ω) = 1. One of two cases holds:
1) ω⊥H1, which implies HDhyp(FrΩ) > 1;
2) ω � H1 and f is a finite Blaschke product or a two-to-one
holomorphic factor of a Blaschke product in some holomorphic
coordinates on C.
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Consider ψ := log |g ′| − log |f ′| ◦ R . Notice that∫
∂D ψ dl = 0, hence HD(ω) = 1.

The latter was proved in 1985 by Makarov without assuming
existence of f .

Consider the asymptotic variance
σ2 = σ2

ν(ψ) := limn→∞
1
n

∫
∂D(Snψ)2 dl .

Then ω⊥H1 is equivalent to σ2 > 0 and equivalent to ψ not
being cohomologous to 0 (not of the form u ◦ f − u).

Theorem (LIL-refined-HD for harmonic measure, FP, Urbański,
Zdunik: Ann. Math. 1989, Studia Math. 1991)

For f ,Ω with σ2 > 0, there exists c(Ω) > 0, such that for
αc(r) := r exp(c

√
log 1/r log log log 1/r)

i) ω⊥Hαc for the gauge function αc , for all 0 < c < c(Ω);
ii) µ� Hαc for all c > c1(Ω).

This theorem applies also e.g. to snowflake-type Ω’s,
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Proofs.
We can find X with HD(X ) ≥ HD(ω)− ε by Katok method
and using HD = h/χ. But we can do better:

σ2 > 0 yields by CLT large fluctuations of the sums∑n−1
j=0 ψ ◦ ς j from 0, allowing to find expanding X with

HD(X ) > HD(ω). One builds an iterated function system, for
which X is the limit set. A special care is needed to get
X ⊂ FrΩ.

Substituting in LIL n ∼ (log 1/rn)/χ(ω) for rn = |(f n)′(x)|−n,
comparing log |(gn)′| − log |(f n)′| ◦ R with

√
2σ2n log log n for

a sequence of n’s, we get

Lemma (Refined Volume Lemma)

For ω-a.e. x

lim sup
n→∞

ω(B(x , rn)

αc(rn)
=

{
∞, for 0 < c < c(ω),

0, for c > c(ω).
.

yielding the Theorem.
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Using R = f −n ◦ R ◦ gn one obtains

Theorem (radial growth)

For Lebesgue a.e. ζ ∈ ∂D

G+(ζ) := lim sup
r↗1

log |R ′(rζ)|√
log(1/1− r) log log log(1/1− r)

= c(Ω).

Similarly G−(ζ) := lim inf · · · = −c(Ω).

Above theorems hold for every connected, simply connected
open Ω ⊂ C, different from C, without existence of f . Of
course one should add ess sup over ζ ∈ ∂D and over z ∈ FrΩ
in Refined Volume Lemma and reformulate the case i) . There
is a universal Makarov’s upper bound CM <∞ for all c(Ω),
CM ≤ 1.2326 (Hedenmalm, Kayumov: PAMS 2007). In 1989 I
gave a weaker estimate.
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Geometric coding trees, g.c.t.

• Above theorems hold in an abstract setting of a geometric
coding tree in U for f : U → C, f (U) ⊃ U proper, giving a
coding π : Σd → Λ to the limit set Λ (in place of
R : ∂D→ FrΩ), provided f extends holomorphically beyond
clΛ called then a quasi-repeller.

. . . b(α)

z1

z2
z3

z

γ1

γ2
γ3

γ0(α)
γ1(α)

γ2(α)

Curves γj : [0, 1]→ f (U), j = 1, . . . , d , join z to z j

γ0(α) := γα0 ,
f ◦ γn(α) = γn−1(ς(α)),
γn(α)(0) = γn−1(α)(1).
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• For a Hölder potential φ : Σd → R (in place of − log |g ′|)
and Gibbs measure µφ one gets a dichotomy for µ := π∗(µφ)
on Λ.

• For a constant potential µ = µmax a measure of maximal
entropy on Julia set J(f ) for f : C→ C rational. Then

1) If σ2 > 0 then HDhyp(J(f )) > HD(µmax).

2) If σ2 = 0 then for each x , y ∈ J(f ) not postcritical, if
z = f n(x) = f m(y) for some positive integers n,m, the orders
of criticality of f n at x and f m at y coincide. In particular all
critical points in J(f ) are pre-periodic, f is postcritically finite
with parabolic orbifold, in particular zd , Chebyshev or some
Lattès maps, (Zdunik, Inv. math. 1990).

• In the Ω version it is sufficient to assume f is defined only in
a neighbourhood of ∂Ω repelling on the side of Ω, called
RB-domain.

• This applies to f polynomial and simply connected Ω = Ω∞
giving again the dichotomy on FrΩ.
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integral mean spectrum

• For a simply connected domain Ω ⊂ C one considers the
integral means spectrum:

βΩ(t) := lim sup
r↗1

1

| log(1− r)| log

∫
ζ∈∂D
|R ′(rζ)|t |dζ|.

This, in presence of f , e.g. for an RB-domain Ω and for
φ = − log |f ′| for g(z) = zd , e.g. Ω being a simply connected
basin of ∞ for a polynomial of degree d , satisfies

βΩ(t) = t − 1 + P(tφ)
log d

. (Makarov, FP & Rohde)

One considers

σ2(logR ′) := lim sup
r↗1

∫
∂D | logR ′(tζ)|2 |dζ|
−2π log(1− r)| .

It holds σ2(logR ′) = 2d2βΩ(t))
dt2 |t=0 (O. Ivrii). It is related to the

Weil-Petersson metric (McMullen).

Recall σ2
µ(tφ) = d2P(f ,tφ)

dt2 for µ Gibbs in expanding case, Ruelle:
Thermodyn. Formalism, FP & Urbański: Conformal Fractals. 34 / 36



8. Accessibility

Theorem (Douady-Eremenko-Levin-Petersen, accessibility of
periodic sources; FP, the general case: Fund. Math. 1994)

Let Λ be a limit set for a g.c.t. T for holomorphic f : U → C.
Assume diam(γn(α))→ 0, as n→∞, uniform shrinking with
respect to α ∈ Σd . Then every good q ∈ clΛ is a limit of a
convergent branch b(α), i.e. q ∈ Λ. In particular, this holds for
every q with χ(q) > 0 satisfying a local backward invariance.

Corollary (lifting of measure, FP 1994 & Proc. ICM18)

Every non-atomic hyperbolic probability measure µ, i.e.
χ(µ) > 0, on clΛ, is the π∗ image of a probability ς-invariant
measure ν on Σd , assumed uniform shrinking, T has no
self-intersections and µ-a.e. local backward invariance of U .
In part. a lift ν exists for every completely invariant
RB-domain, e.g. for µ on FrΩ∞ for f polynomial.
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