Thermodynamic formalism methods in one-dimensional real and complex dynamics

Feliks Przytycki
Institute of Mathematics of the Polish Academy of Sciences

ICM 2018, Rio de Janeiro

1 - Introduction

- Pioneer of statistical physics: Marian Smoluchowski 1872 1917 Vienna-Lvov-Cracow.
- Application of thermodynamic methods to dynamics: Yakov Sinai, David Ruelle, Rufus Bowen 1960/70 -ties.

Lemma (finite variational principle)

For given real numbers $\phi_{1}, \ldots, \phi_{d}$, the function

$$
F\left(p_{1}, \ldots p_{d}\right):=\sum_{i=1}^{d}-p_{i} \log p_{i}+\sum_{\text {average potential }}^{d}
$$

on the simplex $\left\{\left(p_{1}, \ldots, p_{d}\right): p_{i} \geq 0, \sum_{i=1}^{d} p_{i}=1\right\}$ attains its maximum, called pressure equal to $P(\phi)=\log \sum_{i=1}^{d} e^{\phi_{i}}$, at the equilibrium

$$
\hat{p}_{j}=e^{\phi_{j}} / \sum_{i=1}^{d} e^{\phi_{i}}
$$

Hint: $\sum_{i=1}^{d}-p_{i} \log p_{i}+\sum_{i=1}^{d} p_{i} \phi_{i}=\sum_{i=1}^{d} p_{i} \log \left(e^{\phi_{i}} / p_{i}\right)$.

1 - Introduction: dynamics setting corresponding

notions

$f: X \rightarrow X$ a contin. map for a compact metric space (X, ρ), $\phi: X \rightarrow \mathbb{R}$ a continuous function (potential).

Definition (variational topological pressure)

$$
P_{\mathrm{var}}(f, \phi):=\sup _{\mu \in \mathcal{M}(f)}\left(h_{\mu}(f)+\int_{X} \phi d \mu\right)
$$

where $\mathcal{M}(f)$ is the set of all f-invariant Borel probability measures on X and $h_{\mu}(f)$ is measure-theoretical entropy.

Any measure where sup is attained is called equilibrium state.
Definition (topological pressure via separated sets)
$P_{\text {sep }}(f, \phi):=\lim _{\varepsilon \rightarrow 0} \overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \left(\sup _{Y} \sum_{y \in Y} \exp S_{n} \phi(y)\right)$, supremum over all $Y \subset X$ such that for distinct $x, y \in Y$, $\rho_{n}(x, y):=\max \left\{\rho\left(f^{i}(x), f^{i}(y)\right), 0 \leq i \leq n\right\} \geq \varepsilon$.

- $h_{\mu}(f):=\sup _{\mathscr{A}} \lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{A \in \mathscr{A}^{n}}-\mu(A) \log \mu(A)$, supremum over finite partitions \mathscr{A} of X, $\mathscr{A}^{n}:=\bigvee_{j=0, \ldots, n} f^{-j} \mathscr{A}$.

Theorem (variational principle: Ruelle, Walters, Misiurewicz, Denker, ...)
$P_{\text {var }}(f, \phi)=P_{\text {sep }}(f, \phi)$.

FP \& M. Urbański "Conformal Fractals: Ergodic Theory Methods" Cambridge 2010.

Theorem (Gibbs measure - uniform case)

Let $f: X \rightarrow X$ be a distance expanding, topologically transitive continuous open map of a compact metric space X and $\phi: X \rightarrow \mathbb{R}$ be a Hölder continuous potential. Then, there exists exactly one $\mu_{\phi} \in \mathcal{M}(f, X)$, called Gibbs measure, s.t.

$$
C<\frac{\mu_{\phi}\left(f_{x}^{-n}\left(B\left(f^{n}(x), r_{0}\right)\right)\right.}{\exp \left(S_{n} \phi(x)-n P\right)}<C^{-1}
$$

called Gibbs property, where f_{x}^{-n} is the local branch of f^{-n} mapping $f^{n}(x)$ to x and $S_{n} \phi(x):=\sum_{j=0}^{n-1} \phi\left(f^{j}(x)\right)$.

- μ_{ϕ} is the unique equilibrium state for ϕ. It is equivalent to the unique $\exp -(\phi-P)$-conformal measure m_{ϕ}, that is an f-quasi-invariant measure with Jacobian $\exp -(\phi-P)$ for a constant P.
- $P=P(f, \phi):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{x \in f-n\left(x_{0}\right)} \exp S_{n} \phi(x)$. This normalizing limit exists and is equal $P_{\text {sep }}(f, \phi)$ for every $x \in X$.

2 - Introduction to dimension 1

Thermodynamic formalism is useful for studying properties of the underlying space X. In dimension 1 , for f real of class $C^{1+\varepsilon}$ or f holomorphic (conformal) for an expanding repeller X, considering $\phi=\phi_{t}:=-t \log \left|f^{\prime}\right|$ for $t \in \mathbb{R}$, Gibbs property gives, as $\exp S_{n}\left(\phi_{t}\right)=\left|\left(f^{n}\right)^{\prime}\right|^{-t}$,

$$
\begin{array}{r}
\mu_{\phi_{t}}\left(f_{x}^{-n}\left(B\left(f^{n}(x), r_{0}\right)\right)\right) \approx \exp \left(S_{n} \phi(x)-n P\left(\phi_{t}\right)\right) \approx \\
\operatorname{diam} f_{x}^{-n}\left(B\left(f^{n}(x), r_{0}\right)\right)^{t} \exp -n P\left(\phi_{t}\right) .
\end{array}
$$

The latter follows from a comparison of the diameter with the inverse of the absolute value of the derivative of f^{n} at x, due to bounded distortion.
When $t=t_{0}$ is a zero of the function $t \mapsto P\left(\phi_{t}\right)$, this gives

$$
\mu_{\phi_{t_{0}}}(B) \approx(\operatorname{diam} B)^{t_{0}}
$$

for all small balls B, hence $\operatorname{HD}(X)=t_{0}$. Moreover, the Hausdorff measure of X in this dimension is finite and nonzero.

A model application

Theorem (Bowen, Series, Sullivan)

For $f_{c}(z):=z^{2}+c$ for an arbitrary complex number $c \neq 0$ sufficiently close to 0 , the invariant Jordan curve J (Julia set for f_{c}) is fractal, i.e. has Hausdorff dimension bigger than 1.

If $\mathrm{HD}(J)=1$, then $0<H_{1}(J)<\infty$ and $h=R_{2}^{-1} \circ R_{1}$ on S^{1} is absolutely continuous. $g_{i}:=R_{i}^{-1} \circ f_{c} \circ R_{i}$ for $i=1,2$ preserve length ℓ on S^{1} and are ergodic. Hence h preserves ℓ so it is a rotation, identity for appropriate R_{1}, R_{2}. Hence R_{1} and R_{2} glue together to a homography. Compare Mostov rigidity theorem.

complex case

In the complex case we consider f a rational mapping of degree at least 2 of the Riemann sphere $\overline{\mathbb{C}}$. We consider f acting on its Julia set $K=J(f)$ (generalizing the $z^{2}+c$ model $)$.

Figure: Douady's zoo: rabbit $f(z)=z^{2}-0.123+0.745 i$, dendrite $f(z)=z^{2}+i$, basilica mated with rabbit $f(z)=\frac{z^{2}+c}{z^{2}-1}$ for $c=\frac{1+\sqrt{-3}}{2}$ with $J(f)$ being the boundary of black and white

real case

Definition (Real case, FP \& Rivera-Letelier)

$f \in C^{2}$ is called a generalized multimodal map if defined on a neighbourhood of a compact invariant set K, critical points are not infinitely flat, bounded distortion property for iterates holds, abbr. BD, f is topologically transitive and has positive topological entropy on K.
Also K is a maximal forward invariant subset of a finite union of pairwise disjoint closed intervals whose endpoints are in K.

This maximality corresponds to Darboux property. We write $(f, K) \in \mathscr{A}_{+}^{\mathrm{BD}}$, where + marks positive entropy. In place of BD one can assume C^{3} (and write $(f, K) \in \mathscr{A}_{+}^{3}$) and assume that all periodic orbits in K are hyperbolic repelling. Then changing f outside K allows to get $(f, K) \in \mathscr{A}_{+}^{\mathrm{BD}}$.
Examples: Basic sets in spectral decomposition via renormalizations (de Melo, van Strien).

3 - Hyperbolic potentials

Call $\phi: K \rightarrow \mathbb{R}$ satisfying $P(f, \phi)>\sup _{\nu \in \mathcal{M}(f)} \int \phi d \nu$ hyperbolic potential (Inoquio-Renteria, Rivera-Letelier: BBMS 2012). Equiv. $P(f, \phi)>\sup _{K} \frac{1}{n} S_{n} \phi$ for some n.

Theorem (complex and real: Denker, Urbański, FP, Haydn, Rivera-Letelier, Zdunik, Szostakiewicz, H. Li, Bruin, Todd)

. If ϕ is a Hölder continuous hyperbolic potential, then there exists a unique equilibrium state μ_{ϕ}. For every Hölder $u: K \rightarrow \mathbb{R}$, the Central Limit Theorem (CLT) and Law of Iterated Logarithm (LIL) for the sequence of random variables $u \circ f^{n}$ and μ_{ϕ} hold.

CLT follows from sufficiently fast convergence of iteration of transfer operator (spectral gap). LIL is proved via LIL for a return map (inducing) to a nice domain related to μ_{ϕ} (Mañé, Denker, Urbański) providing a Markov structure (Infinite Iterated Function System) avoiding critical points, satisf. BD.

4 - Non-uniform hyperbolicity

a) CE. Collet-Eckmann condition. There exists $\lambda>1, C>0$

$$
\left|\left(f^{n}\right)^{\prime}(f(c))\right| \geq C \lambda^{n}
$$

for all critical points $c \in K$ whose forward orbit is disjoint from Crit (f). Moreover there are no indifferent periodic orbits in K.
(b) CE2 $\left(z_{0}\right)$. Backward or second Collet-Eckmann condition at $z_{0} \in K$. There exist $\lambda>1$ and $C>0$ such that for every $n \geq 1$ and every $w \in f^{-n}\left(z_{0}\right)$ (in a neighbourhood of K in the real case)

$$
\left|\left(f^{n}\right)^{\prime}(w)\right| \geq C \lambda^{n}
$$

(c) TCE. Topological Collet-Eckmann condition (FP \& S.

Rohde, Fund. Math. 1998).
There exist $M \geq 0, P \geq 1, r>0$ such that for every $x \in K$ there exist increasing $n_{j}, j=1,2, \ldots$, such that $n_{j} \leq P \cdot j$ and for each j and discs $B(\cdot)$ below understood in \mathbb{C} or \mathbb{R}.
$\left.\#\left\{0 \leq i<n_{j}: \operatorname{Comp}_{f^{i}(x)} f^{-\left(n_{j}-i\right)} B\left(f^{n_{j}}(x), r\right)\right) \cap \operatorname{Crit}(f) \neq \varnothing\right\} \leq M$.

Each component of $f^{-n}(B)$ is called a pullback of B.
(d) ExpShrink. Exponential shrinking of components. There exist $\lambda>1$ and $r>0$ such that for every $x \in K$, every $n>0$ and every connected component W_{n} of $f^{-n}(B(x, r))$ for the disc (interval) $B(x, r)$ in $\overline{\mathbb{C}}$ (or \mathbb{R}), intersecting K

$$
\operatorname{diam}\left(W_{n}\right) \leq \lambda^{-n} .
$$

(e) LyapHyp. Lyapunov hyperbolicity. There is $\lambda>1$ such that the Lyapunov exponent $\chi(\mu):=\int_{K} \log \left|f^{\prime}\right| d \mu$ of any ergodic measure $\mu \in \mathcal{M}(f, K)$ satisfies $\chi(\mu) \geq \log \lambda$.
(f) UHP. uniform hyperbolicity on periodic orbits. There exists $\lambda>1$ such that every periodic point $p \in K$ of period $k \geq 1$ satisfies

$$
\left|\left(f^{k}\right)^{\prime}(p)\right| \geq \lambda^{k} .
$$

Theorem (..., Keller, Nowicki, Sands, FP, Rohde, Rivera-Letelier, Graczyk, Smirnov)

Assume there are no indifferent periodic orbits in K. Then

1. The conditions (c)-(f) and else (b) for some z_{0} are equivalent (in the real case under the assumption of weak isolation: any periodic orbit close to K must be in K).
2. CE implies (b)-(f).
3. If there is only one critical point in the Julia set in the complex case or if f is S-unimodal on $K=I$ in the real case, then all conditions above are equivalent to each other.
4. TCE is topologically invariant; therefore all other conditions equivalent to it are topologically invariant.

For polynomials (b)-(f) are equivalent to $K=J(f)=\operatorname{Fr} \Omega_{\infty}(f)$, the basin of ∞, being Hölder (Graczyk, Smirnov).

An order of proving the equivalences in Theorem above is, for z_{0} safe,
CE2 $\left(z_{0}\right) \Rightarrow$ ExpShrink \Rightarrow LyapHyp \Rightarrow UHP \Rightarrow CE2 $\left(z_{0}\right)$
Separately one proves ExpShrink \Leftrightarrow TCE using for \Rightarrow the following

Lemma (Denker, FP, Urbański, ETDS 1996)

$$
\sum_{j=0}^{n}-\log \left|f^{j}(x)-c\right| \leq Q n
$$

for a constant $Q>0$ every $c \in \operatorname{Crit}(f)$, every $x \in K$ and every integer $n>0$. Σ^{\prime} means that we omit in the sum an index j of smallest distance $\left|f^{j}(x)-c\right|$.

Assumed UHP one proves CE2 $\left(z_{0}\right)$ for safe and hyperbolic z_{0} by "shadowing".

Definition (safe)

We call $z \in K$ safe if $z \notin \bigcup_{j=1}^{\infty}\left(f^{j}(\operatorname{Crit}(f))\right)$ and for every
$\epsilon>0$ and all n large enough
$B(z, \exp (-\epsilon n)) \cap \bigcup_{j=1}^{n}\left(f^{j}(\operatorname{Crit}(f))\right)=\varnothing$.
Notice that this definition implies that all points except at most a set of Hausdorff dimension 0, are safe.

5 - Geometric variational pressure and equilibrium

states

For $\phi=\phi_{t}:=-t \log \left|f^{\prime}\right|$, the variational definition of pressure, here

$$
P(t):=P_{\mathrm{var}}\left(f, \phi_{t}\right)=\sup _{\mu \in \mathcal{M}(f)}\left(h_{\mu}(f)-t \int_{K} \log \left|f^{\prime}\right| d \mu\right)
$$

still makes sense by the integrability of $\log \left|f^{\prime}\right|$. Moreover $\int_{K} \log \left|f^{\prime}\right| d \mu=\chi(\mu) \geq 0$, for all ergodic μ even in presence of critical points where $\phi= \pm \infty$, [FP: PAMS 1993, Rivera-Letelier: arXiv 2012]. By this definition $t \mapsto P(t)$ is convex, monotone decreasing.

We usually assume $t>0$ later on.

Figure: The geometric pressure: LyapHyp with $t_{+}=\infty$, LyapHyp with $t_{+}<\infty$, and non-LyapHyp.
$P(t)$ is equal to several other quantities (Complex: FP TAMS 1999, FP \& Rivera-Letelier \& Smirnov ETDS 2004). E.g.

Definition (hyperbolic pressure)

$$
P_{\text {hyp }}(t):=\sup _{x \in \mathscr{H}(f, K)} P\left(\left.f\right|_{\left.x,-t \log \left|f^{\prime}\right|\right),}\right.
$$

where $\mathscr{H}(f, K)$ is defined as the space of all compact forward inv., i.e. $f(X) \subset X$, expanding subsets of K, repellers in \mathbb{R}.

Definition (hyperbolic dimension)

$$
\operatorname{HD}_{\text {hyp }}(K):=\sup _{X \in \mathscr{H}(f, K)} \operatorname{HD}(X) .
$$

For expanding $f: X \rightarrow X, t_{0}(X)=\operatorname{HD}(X)$. Passing to sup:

Proposition (Generalized Bowen's formula)

The first zero t_{0} of $t \mapsto P_{\text {hyp }}(K, t)$ is equal to $\mathrm{HD}_{\text {hyp }}(K)$.
It may happen $\operatorname{HD}_{\text {hyp }}(J(f))<\operatorname{HD}(J(f))=2$ for f quadratic polynomials, Avila \& Lyubich.

Theorem (FP \& Rivera-Letelier)

1. Real case (arXiv 2014, to appear in Memoir of the AMS). Let $(f, K) \in \mathscr{A}_{+}^{3}, f$-periodic orbits in K be hyperbolic repelling. Then

- $t \mapsto P(t)$ is real analytic on an open interval $\left(t_{-}, t_{+}\right)$defined by $P(t)>\sup _{\nu \in \mathcal{M}(f)}-t \int \log \left|f^{\prime}\right| d \nu$
- For each t in this interval there is a unique invariant equilibrium state $\mu_{\phi_{t}}$. It is ergodic and absolutely continuous with respect to an adequate conformal measure $m_{\phi_{t}}$ with $d \mu_{\phi_{t}} / d m_{\phi_{t}} \geq$ Const >0 a.e.
- If furthermore f is topologically exact on K (that is for every V an open subset of K there exists $n \geq 0$ such that
$\left.f^{n}(V)=K\right)$, then this measure is mixing, has expon. decay of corr. and satisfies CLT for Lipschitz gauge functions.

This generalizes results by Bruin, lommi, Pesin, Senti, Todd.

Theorem (FP \& Rivera-Letelier)

2. Complex case (Comm. Mat. Phys. 2011). The assertion is the same. One assumes a very weak expansion: the existence of arbitrarily small nice, or pleasant, couples and hyperbolicity away from critical points.

Remark. For real f satisfying LyapHyp and $K=\hat{l}$, we have the unique zero of pressure $t_{0}=1$ and for $-\log \left|f^{\prime}\right|$ we conclude that a unique equilibrium state exists which is a.c.i.m. .

In general it holds assumed e.g. $\left|\left(f^{n}\right)^{\prime}(f(c))\right| \rightarrow \infty$ for all $c \in \operatorname{Crit}(f)$ (Bruin \& Rivera-Letelier \& Shen \& van Strien: Inv. math 2008). For $t>t_{+}$, LyapHyp, equilibria do not exist (Rivera-Letelier \& Inoquio 2012).

Proofs use inducing (Lai-Sang Young towers). For a different proof, the real case, see a recent preprint by Dobbs and Todd.
$P_{\mathrm{var}}(t)$ allows to study dimension spectrum for Lyapunov exponent via Legendre transformation, proving in particular

$$
\operatorname{HD}(\{x \in K: \chi(x)=\alpha\})=\frac{1}{|\alpha|} \inf _{t \in \mathbb{R}}(P(t)+\alpha t) .
$$

Proof of \geq. Given α consider t where inf is attained. The tangent to $P(t)$ at t is parallel to $-\alpha t$ and for μ_{t} the equilibrium, it is $h_{\mu_{t}}(f)-t \chi\left(\mu_{t}\right)$. So the infimum is $h_{\mu_{t}}(f)$, see Fig. (By variational definition $P(t)$ and h_{μ} are mutual Legendre type transforms.) Dividing by α gives \geq using Mañé's equality $\operatorname{HD}(\mu)=h_{\mu}(f) / \chi(\mu)$.

Proof of \leq uses conformal measures.

Use of the Legendre transform of $P(t)$ allows also to give formulas for HD of irregular sets

$$
\operatorname{HD}(\{\underline{\chi}(x)=\alpha, \bar{\chi}(x)=\beta\})
$$

for $\beta>0$ [Gelfert \& FP \& Rams: Math. Ann. 2010, ETDS 2016].

In analogy to $\chi(\mu) \geq 0$ one has:

Theorem (Levin \& FP \& Shen: Inv.math. 2016))

If for a rational function $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ there is only one critical point c in $J(f)$ and no parabolic periodic orbits, then $\underline{\chi}(f(c)) \geq 0$.

For S-unimodal maps of interval this was proved much earlier by Nowicki and Sands.

6 - Other definitions of geometric pressure

Definition (tree pressure)

For every $z \in K$ and $t \in \mathbb{R}$ define

$$
P_{\text {tree }}(z, t)=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \sum_{f^{n}(x)=z, x \in K}\left|\left(f^{n}\right)^{\prime}(x)\right|^{-t}
$$

Theorem

$P_{\text {tree }}(z, t)$ does not depend on z for z safe.

- In the complex case to prove $P_{\text {tree }}\left(z_{1}, t\right)=P_{\text {tree }}\left(z_{2}, t\right)$ one joins z_{1} to z_{2} with a curve not fast accumulated by critical trajectories, FP: TAMS 1999, FP \& Rivera-Letelier \& Smirnov: ETDS 2004.
- In the real case there is no room for such curves. Instead, one relies on topological transitivity, FP \& Rivera-Letelier: arXiv 2014 \& Memoir AMS 2019, FP: Monatsh. Math. 2018.
- For $\phi=-t \log \left|f^{\prime}\right|$ pressure via separated sets does not make sense. Indeed, in presence of critical points for f, it is equal to $+\infty$. So it is replaced by $P_{\text {tree }}$.
- One can consider however spanning geometric pressure $P_{\text {span }}(t)$ using (n, ε)-spanning sets and infimum.
Assumed weak backward Lyapunov stability it is indeed equal to $P(t)$ in the complex case (FP: Monatsh. Math. 2018).
- This is not so in the real case (where wbls always holds if all periodic orbits hyperbolic repelling). It happens $P_{\text {span }}(t)=\infty$ if some x with big $\left|\left(f^{n}\right)^{\prime}(x)\right|^{-1}$ is well ρ_{n}-isolated.

Definition (weak backward Lyapunov stability, wbls)

f is weakly backward Lyapunov stable if for every $\delta>0$ and $\varepsilon>0$ for all n large enough and every disc $B=B(x, \exp -\delta n)$ centered at $x \in K$, for every $0 \leq j \leq n$ and every component V of $f^{-j}(B)$ intersecting K, it holds that $\operatorname{diam} V \leq \varepsilon$.

Question. Does wbls hold for all rational maps?

7 - Boundary dichotomy

- Let $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ be a rational map with $\operatorname{deg}(f) \geq 2$. and let $\Omega=\Omega_{p}(f)$ be a simply connected immediate basin of attraction to a fixed point p. Let $R: \mathbb{D} \rightarrow \Omega$ be a Riemann $\operatorname{map} R(0)=p$ and $g: \mathbb{D} \rightarrow \mathbb{D}$ defined by $g:=R^{-1} \circ f \circ R$, extended conformaly beyond $\operatorname{Fr} \Omega$ (Schwarz symmetry), thus expanding on $\partial \mathbb{D}$.
- Consider harmonic measure $\omega=\bar{R}_{*}(I)$, where I is normalized length measure on $\partial \mathbb{D}$ and \bar{R} is radial limit, defined l-a.e. I is g-invariant, hence ω is f-invariant. Denote by H_{1} Hausdorff measure in dimension 1.

$$
g=R^{-1} \circ f \circ R
$$

Theorem (FP, Urbański, Zdunik: 1985 - 2006)

For f, Ω as above, $H D(\omega)=1$. One of two cases holds:

1) $\omega \perp H_{1}$, which implies $\mathrm{HD}_{\text {hyp }}(\operatorname{Fr} \Omega)>1$;
2) $\omega \ll H_{1}$ and f is a finite Blaschke product or a two-to-one holomorphic factor of a Blaschke product in some holomorphic coordinates on $\overline{\mathbb{C}}$.

Consider $\psi:=\log \left|g^{\prime}\right|-\log \left|f^{\prime}\right| \circ \bar{R}$. Notice that

$$
\int_{\partial \mathbb{D}} \psi d l=0, \text { hence } \operatorname{HD}(\omega)=1
$$

The latter was proved in 1985 by Makarov without assuming existence of f.

Consider the asymptotic variance $\sigma^{2}=\sigma_{\nu}^{2}(\psi):=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{\partial \mathbb{D}}\left(S_{n} \psi\right)^{2} d l$.
Then $\omega \perp H_{1}$ is equivalent to $\sigma^{2}>0$ and equivalent to ψ not being cohomologous to 0 (not of the form $u \circ f-u$).

Theorem (LIL-refined-HD for harmonic measure, FP, Urbański, Zdunik: Ann. Math. 1989, Studia Math. 1991)

For f, Ω with $\sigma^{2}>0$, there exists $c(\Omega)>0$, such that for $\alpha_{c}(r):=r \exp (c \sqrt{\log 1 / r \log \log \log 1 / r})$
i) $\omega \perp H_{\alpha_{c}}$ for the gauge function α_{c}, for all $0<c<c(\Omega)$;
ii) $\mu \ll H_{\alpha_{c}}$ for all $c>c_{1}(\Omega)$.

This theorem applies also e.g. to snowflake-type Ω 's,

Proofs.

We can find X with $\mathrm{HD}(X) \geq \mathrm{HD}(\omega)-\epsilon$ by Katok method and using $\mathrm{HD}=h / \chi$. But we can do better:
$\sigma^{2}>0$ yields by CLT large fluctuations of the sums
$\sum_{j=0}^{n-1} \psi \circ \varsigma^{j}$ from 0 , allowing to find expanding X with $\mathrm{HD}(X)>\operatorname{HD}(\omega)$. One builds an iterated function system, for which X is the limit set. A special care is needed to get $X \subset \operatorname{Fr} \Omega$.

Substituting in LIL $n \sim\left(\log 1 / r_{n}\right) / \chi(\omega)$ for $r_{n}=\left|\left(f^{n}\right)^{\prime}(x)\right|^{-n}$, comparing $\log \left|\left(g^{n}\right)^{\prime}\right|-\log \left|\left(f^{n}\right)^{\prime}\right| \circ \bar{R}$ with $\sqrt{2 \sigma^{2} n \log \log n}$ for a sequence of n 's, we get

Lemma (Refined Volume Lemma)

For ω-a.e. x

$$
\limsup _{n \rightarrow \infty} \frac{\omega\left(B\left(x, r_{n}\right)\right.}{\alpha_{c}\left(r_{n}\right)}= \begin{cases}\infty, & \text { for } 0<c<c(\omega) \\ 0, & \text { for } c>c(\omega)\end{cases}
$$

Using $R=f^{-n} \circ R \circ g^{n}$ one obtains

Theorem (radial growth)

For Lebesgue a.e. $\zeta \in \partial \mathbb{D}$

$$
G^{+}(\zeta):=\limsup _{r \nearrow 1} \frac{\log \left|R^{\prime}(r \zeta)\right|}{\sqrt{\log (1 / 1-r) \log \log \log (1 / 1-r)}}=c(\Omega)
$$

Similarly $G^{-}(\zeta):=\liminf \cdots=-c(\Omega)$.

Above theorems hold for every connected, simply connected open $\Omega \subset \mathbb{C}$, different from \mathbb{C}, without existence of f. Of course one should add ess sup over $\zeta \in \partial \mathbb{D}$ and over $z \in \operatorname{Fr} \Omega$ in Refined Volume Lemma and reformulate the case i). There is a universal Makarov's upper bound $C_{M}<\infty$ for all $c(\Omega)$, $C_{\mathrm{M}} \leq 1.2326$ (Hedenmalm, Kayumov: PAMS 2007). In 1989 I gave a weaker estimate.

Geometric coding trees, g.c.t.

- Above theorems hold in an abstract setting of a geometric coding tree in U for $f: U \rightarrow \overline{\mathbb{C}}, f(U) \supset U$ proper, giving a coding $\pi: \Sigma^{d} \rightarrow \Lambda$ to the limit set Λ (in place of $\bar{R}: \partial \mathbb{D} \rightarrow \operatorname{Fr} \Omega$), provided f extends holomorphically beyond $\mathrm{cl} \Lambda$ called then a quasi-repeller.

Curves $\gamma^{j}:[0,1] \rightarrow f(U), j=1, \ldots, d$, join z to z^{j}

$$
\begin{gathered}
\gamma_{0}(\alpha):=\gamma^{\alpha_{0}} \\
f \circ \gamma_{n}(\alpha)=\gamma_{n-1}(\varsigma(\alpha)), \\
\gamma_{n}(\alpha)(0)=\gamma_{n-1}(\alpha)(1)
\end{gathered}
$$

- For a Hölder potential $\phi: \Sigma^{d} \rightarrow \mathbb{R}$ (in place of $\left.-\log \left|g^{\prime}\right|\right)$ and Gibbs measure μ_{ϕ} one gets a dichotomy for $\mu:=\pi_{*}\left(\mu_{\phi}\right)$ on Λ.
- For a constant potential $\mu=\mu_{\max }$ a measure of maximal entropy on Julia set $J(f)$ for $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ rational. Then 1) If $\sigma^{2}>0$ then $\operatorname{HD}_{\text {hyp }}(J(f))>\operatorname{HD}\left(\mu_{\text {max }}\right)$.

2) If $\sigma^{2}=0$ then for each $x, y \in J(f)$ not postcritical, if $z=f^{n}(x)=f^{m}(y)$ for some positive integers n, m, the orders of criticality of f^{n} at x and f^{m} at y coincide. In particular all critical points in $J(f)$ are pre-periodic, f is postcritically finite with parabolic orbifold, in particular z^{d}, Chebyshev or some Lattès maps, (Zdunik, Inv. math. 1990).

- In the Ω version it is sufficient to assume f is defined only in a neighbourhood of $\partial \Omega$ repelling on the side of Ω, called RB-domain.
- This applies to f polynomial and simply connected $\Omega=\Omega_{\infty}$ giving again the dichotomy on $\operatorname{Fr} \Omega$.

integral mean spectrum

- For a simply connected domain $\Omega \subset \mathbb{C}$ one considers the integral means spectrum:

$$
\beta_{\Omega}(t):=\limsup _{r \neq 1} \frac{1}{|\log (1-r)|} \log \int_{\zeta \in \partial \mathbb{D}}\left|R^{\prime}(r \zeta)\right|^{t}|d \zeta| .
$$

This, in presence of f, e.g. for an RB -domain Ω and for $\phi=-\log \left|f^{\prime}\right|$ for $g(z)=z^{d}$, e.g. Ω being a simply connected basin of ∞ for a polynomial of degree d, satisfies

$$
\beta_{\Omega}(t)=t-1+\frac{P(t \phi)}{\log d} . \quad \text { (Makarov, FP \& Rohde) }
$$

One considers

$$
\sigma^{2}\left(\log R^{\prime}\right):=\underset{r \neq 1}{\lim \sup } \frac{\int_{\partial \mathbb{D}}\left|\log R^{\prime}(t \zeta)\right|^{2}|d \zeta|}{-2 \pi \log (1-r) \mid} .
$$

It holds $\sigma^{2}\left(\log R^{\prime}\right)=\left.2 \frac{\left.d^{2} \Omega_{\Omega}(t)\right)}{d t^{2}}\right|_{t=0}$ (O. Ivrii). It is related to the Weil-Petersson metric (McMullen).
Recall $\sigma_{\mu}^{2}(t \phi)=\frac{d^{2} P(f, t \phi)}{d t^{2}}$ for μ Gibbs in expanding case, Ruelle: Thermodyn. Formalism, FP \& Urbański: Conformal Fractals.

8. Accessibility

> Theorem (Douady-Eremenko-Levin-Petersen, accessibility of periodic sources; FP, the general case: Fund. Math. 1994)

> Let \wedge be a limit set for a g.c.t. \mathscr{T} for holomorphic $f: U \rightarrow \overline{\mathbb{C}}$. Assume $\operatorname{diam}\left(\gamma_{n}(\alpha)\right) \rightarrow 0$, as $n \rightarrow \infty$, uniform shrinking with respect to $\alpha \in \Sigma^{d}$. Then every good $q \in \operatorname{cl} \Lambda$ is a limit of a convergent branch $b(\alpha)$, i.e. $q \in \Lambda$. In particular, this holds for every q with $\underline{\chi}(q)>0$ satisfying a local backward invariance.

Corollary (lifting of measure, FP 1994 \& Proc. ICM18)

Every non-atomic hyperbolic probability measure μ, i.e. $\chi(\mu)>0$, on $\mathrm{cl} \Lambda$, is the π_{*} image of a probability ς-invariant measure ν on Σ^{d}, assumed uniform shrinking, \mathscr{T} has no self-intersections and μ-a.e. local backward invariance of U. In part. a lift ν exists for every completely invariant $R B$-domain, e.g. for μ on $\operatorname{Fr} \Omega_{\infty}$ for f polynomial.

THANK YOU FOR YOUR ATTENTION

